Degradation state of organic matter in surface sediments from the Southern Beaufort Sea: a lipid approach
-
Published:2012-09-05
Issue:9
Volume:9
Page:3513-3530
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Rontani J.-F.,Charriere B.,Petit M.,Vaultier F.,Heipieper H. J.,Link H.,Chaillou G.,Sempéré R.
Abstract
Abstract. For the next decades significant climatic changes should occur in the Arctic zone. The expected destabilisation of permafrost and its consequences for hydrology and plant cover should increase the input of terrigenous carbon to coastal seas. Consequently, the relative importance of the fluxes of terrestrial and marine organic carbon to the seafloor will likely change, strongly impacting the preservation of organic carbon in Arctic marine sediments. Here, we investigated the lipid content of surface sediments collected on the Mackenzie basin in the Beaufort Sea. Particular attention was given to biotic and abiotic degradation products of sterols and monounsaturated fatty acids. By using sitosterol and campesterol degradation products as tracers of the degradation of terrestrial higher plant inputs and brassicasterol degradation products as tracers of degradation of phytoplanktonic organisms, it could be observed that autoxidation, photooxidation and biodegradation processes act much more intensively on higher plant debris than on phytoplanktonic organisms. Examination of oxidation products of monounsaturated fatty acids showed that photo- and autoxidation processes act more intensively on bacteria than on phytodetritus. Enhanced damages induced by singlet oxygen (transferred from senescent phytoplanktonic cells) in bacteria were attributed to the lack of an adapted antioxidant system in these microorganisms. The strong oxidative stress observed in the sampled sediments resulted in the production of significant amounts of epoxy acids and unusually high proportions of monounsaturated fatty acids with a trans double bond. The formation of epoxy acids was attributed to peroxygenases (enzymes playing a protective role against the deleterious effects of fatty acid hydroperoxides in vivo), while cis/trans isomerisation was probably induced by thiyl radicals produced during the reaction of thiols with hydroperoxides. Our results confirm the important role played by abiotic oxidative processes in the degradation of marine bacteria and do not support the generally expected refractory character of terrigenous material deposited in deltaic systems.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference105 articles.
1. Alkhatib, M., Schubert, C. J., del Giorgio, P. A., Gelinas, Y., and Lehmann, M. F.: Organic matter reactivity indicators in sediments of the St. Lawrence Estuary, Estuar. Coast. Shelf. Sci., 102–103, 36–47, 2012. 2. Babin, M., Bélanger, S., Devred, E., Doxaran, D., Forest, A., Gratton, Y., Lansard, B., Marec, C., Matsuoka, A., Prieur, L., Raimbault, P., and Tremblay, J.-E.: How do changes in ice cover, permafrost and UV radiation impact on biodiversity and biogeochemical fluxes in the Arctic Ocean? The Malina project and field expedition, Biogeosciences Discuss., in preparation, 2012. 3. Belicka, L. L., Macdonald, R. W., Yunker, M. B., and Harvey, H. R.: The role of depositional regime on carbon transport and preservation in Arctic Ocean sediments, Mar. Chem., 86, 65–88, 2004. 4. Berner, R. A.: Burial of organic carbon and pyrite sulphur in the modern ocean: its geochemical and environmental significance, Am. J. Sci., 282, 451–473, 1982. 5. Berti, G.: Stereochemical aspects of the synthesis of 1,2-epoxides, in: Topics in Stereochemistry, edited by: Allinger, N. L. and Eliel, E. L., Interscience Publishers, New York, 95–234, 1973.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|