Author:
Miller E. S.,Kil H.,Makela J. J.,Heelis R. A.,Talaat E. R.,Gross A.
Abstract
Abstract. Plasma blobs, localized plasma density enhancements that occur singularly or in periodic groups, have been observed by in situ sensors in the lower- and middle-latitude nighttime ionosphere. Traditionally, creation of blobs has been thought to be connected to equatorial plasma bubbles, which are localized plasma depletions. Here, we report the association of blobs with medium-scale traveling ionospheric disturbances (MSTIDs). On 17 January 2010, an all-sky imager on the Caribbean island of Bonaire (geographic: 12.190° N, 68.244° W; geomagnetic 22.46° N, 7.099° E) observed a nighttime electrified MSTID propagating to the southwest. At the time of the MSTID's transit, the Coupled Ion-Neutral Dynamics Investigation instrument onboard the Communication/Navigation Outage Forecasting System satellite detected a group of blobs along the same geomagnetic flux tubes. The electron density variations measured at the satellite altitude, indicating the blobs, are anticorrelated with the intensity variations of the 630.0 nm dissociative recombination emission measured on the same magnetic field lines. This relationship is explained by a modulation of the O+ profile altitude due to electric fields generated within the MSTID. This idea is supported by in situ measurements of the vertical ion velocity. We argue that common climatology between blobs and MSTIDs reported in the literature, as well as this coincident observation, suggest that blobs may be the in situ signature of MSTIDs in the topside ionosphere.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献