Low-latitude scintillation occurrences around the equatorial anomaly crest over Indonesia

Author:

Abadi P.,Saito S.,Srigutomo W.

Abstract

Abstract. We investigated low-latitude ionospheric scintillation in Indonesia using two GPS receivers installed at Bandung (107.6° E, 6.9° S; magnetic latitude 17.5° S) and Pontianak (109.3° E, 0.02° S; magnetic latitude 8.9° S). This study aimed to characterise climatological and directional ionospheric scintillation occurrences, which are useful not only for the physics of ionospheric irregularities but also for practical use in GNSS (global navigation satellite system)-based navigation. We used the deployed instrument's amplitude scintillation (S4 index) data from 2009, 2010, and 2011; the yearly SSN (sunspot-smoothed numbers) were 3.1, 16.5, and 55.9, respectively. In summary, (1) scintillation occurrences in the post-sunset period (18:00–01:00 LT) during equinox months (plasma bubble season) at the two sites can be ascribed to the plasma bubble; (2) using directional analyses of the two sites, we found that the distribution of scintillation occurrences is generally concentrated between the two sites, indicating the average location of the EIA (equatorial ionisation anomaly) crest; (3) scintillation occurrence enhancements for the two sites in field-aligned directions are herein reported for the first time by ground-based observation in a low-latitude region; (4) distribution of scintillation occurrences at Pontianak are concentrated in the southern sky, especially in the southwest direction, which is very likely associated with the plasma bubble tilted westward with increasing latitude; and (5) scintillation occurrence in the post-midnight period in the non-plasma-bubble season is the most intriguing variable occurring between the two sites (i.e. post-midnight scintillations are observed more at Bandung than Pontianak). Most of the post-midnight scintillations observed at Bandung are concentrated in the northern sky, with low elevation angles. This might be due to the amplitude of irregularities in certain directions, which may be effectively enhanced by background density enhancement by the EIA and because satellite–receiver paths are longer in the EIA crest region and in a field-aligned direction.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3