The influence of crustal strength on rift geometry and development – insights from 3D numerical modelling

Author:

Phillips Thomas B.ORCID,Naliboff John B.,McCaffrey Ken J. W.ORCID,Pan Sophie,van Hunen JeroenORCID,Froemchen MalteORCID

Abstract

Abstract. The lateral distribution of strength within the crust is non-uniform, dictated by crustal lithology and the presence and distribution of heterogeneities within it. During continental extension, areas of crust with distinct lithological and rheological properties manifest strain differently, influencing the structural style, geometry, and evolution of the developing rift system. Here, we use 3D thermo-mechanical models of continental extension to explore how pre-rift upper-crustal strength variations influence rift physiography. We model a 500×500×100 km volume containing 125 km wide domains of mechanically “strong” and “weak” upper crust along with two reference domains, based upon geological observations of the Great South Basin, New Zealand, where extension occurs parallel to the boundaries between distinct geological terranes. Crustal strength is represented by varying the initial strength of 5 km3 blocks. Extension is oriented parallel to the domain boundaries such that each domain is subject to the same 5 mm yr−1 extension rate. Our modelling results show that strain initially localises in the weak domain, with faults initially following the distribution of initial plastic strain before reorganising to produce a well-established network, all occurring in the initial 100 kyr. In contrast, little to no localisation occurs in the strong domain, which is characterised by uniform strain. We find that although faults in the weak domain are initially inhibited at the terrane boundaries, they eventually propagate through and “seed” faults in the relatively strong adjacent domains. We show characteristic structural styles associated with strong and weak crust and relate our observations to rift systems developed across laterally heterogeneous crust worldwide, such as the Great South Basin, New Zealand, and the Tanganyika Rift, East Africa.

Funder

Leverhulme Trust

Natural Environment Research Council

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3