How Do Rift‐Related Fault Network Distributions Evolve? Quantitative Comparisons Between Natural Fault Observations and 3D Numerical Models of Continental Extension

Author:

Pan Sophie1ORCID,Naliboff John2ORCID,Bell Rebecca1,Jackson Chris3

Affiliation:

1. Department of Earth Science and Engineering Imperial College London UK

2. Department of Earth and Environmental Science New Mexico Institute of Mining and Technology Socorro NM USA

3. Department of Earth and Environmental Sciences The University of Manchester Manchester UK

Abstract

AbstractContinental extension is primarily accommodated by the evolution of normal fault networks. Rifts are shaped by complex tectonic processes and it has historically been difficult to determine the key rift controls using only observations from natural rifts. Here, we use 3D thermo‐mechanical, high‐resolution (<650 m) forward models of continental extension to investigate how fault network patterns vary as a function of key rift parameters, including extension rate, the magnitude of strain weakening, and the distribution and magnitude of initial crustal damage. We quantitatively compare modeled fault networks with observations of fault patterns in natural rifts, finding key similarities in their along‐strike variability and scaling distributions. We show that fault‐accommodated strain summed across the entire 180 × 180 km study area increases linearly with time. We find that large faults do not abide by power‐law scaling as they are limited by an upper finite characteristic, ω0. Fault weakening, and the spatial distribution of initial plastic strain blocks, exert a key control on fault characteristics. We show that off‐fault (i.e., non‐fault extracted) deformation accounts for 25%–45% of the total extensional strain, depending on the rift parameters. As fault population statistics produce distinct characteristics for our investigated rift parameters, further numerical and observational data may enable the future reconstruction of key rifting parameters through observational data alone.

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3