Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust

Author:

Schuster G. L.,Vaughan M.,MacDonnell D.,Su W.,Winker D.,Dubovik O.,Lapyonok T.,Trepte C.

Abstract

Abstract. We compared CALIPSO column aerosol optical depths at 0.532 μm to measurements at 147 AERONET sites, synchronized to within 30 min of satellite overpass times during a 3-yr period. We found 677 suitable overpasses, and a CALIPSO bias of −13% relative to AERONET for the entire data set; the corresponding absolute bias is −0.029, and the standard deviation of the mean (SDOM) is 0.014. Consequently, the null hypothesis is rejected at the 97% confidence level, indicating a statistically significant difference between the datasets. However, if we omit CALIPSO columns that contain dust from our analysis, the relative and absolute biases are reduced to −3% and −0.005 with a standard error of 0.016 for 449 overpasses, and the statistical confidence level for the null hypothesis rejection is reduced to 27%. We also analyzed the results according to the six CALIPSO aerosol subtypes and found relative and absolute biases of −29% and −0.1 for atmospheric columns that contain the dust subtype exclusively, but with a relatively high correlation coefficient of R = 0.58; this indicates the possibility that the assumed lidar ratio (40 sr) for the CALIPSO dust retrievals is too low. Hence, we used the AERONET size distributions, refractive indices, percent spheres, and forward optics code for spheres and spheroids to compute a lidar ratio climatology for AERONET sites located in the dust belt. The highest lidar ratios of our analysis occur in the non-Sahel regions of Northern Africa, where the median lidar ratio at 0.532 μm is 55.4 sr for 229 retrievals. Lidar ratios are somewhat lower in the African Sahel (49.7 sr for 929 retrievals), the Middle East (42.6 sr for 489 retrievals), and Kanpur, India (43.8 sr for 67 retrievals). We attribute this regional variability in the lidar ratio to the regional variability of the real refractive index of dust, as these two parameters are highly anti-correlated (correlation coefficients range from −0.51 to −0.85 for the various regions). The AERONET refractive index variability is consistent with the variability of illite concentration in dust across the dust belt.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 211 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3