Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data

Author:

Balkanski Y.,Schulz M.,Claquin T.,Guibert S.

Abstract

Abstract. Modelling studies and satellite retrievals do not agree on the amplitude and/or sign of the direct radiative perturbation from dust. Modelling studies have systematically overpredicted mineral dust absorption compared to estimates based upon satellite retrievals. In this paper we first point out the source of this discrepancy, which originates from the shortwave refractive index of dust used in models. The imaginary part of the refractive index retrieved from AERONET over the range 300 to 700 nm is 3 to 6 times smaller than that used previously to model dust. We attempt to constrain these refractive indices using a mineralogical database and varying the abundances of iron oxides (the main absorber in the visible). We first consider the optically active mineral constituents of dust and compute the refractive indices from internal and external mixtures of minerals with relative amounts encountered in parent soils. We then compute the radiative perturbation due to mineral aerosols for internally and externally mixed minerals for 3 different hematite contents, 0.9%, 1.5% and 2.7% by volume. These constant amounts of hematite allow bracketing the influence of dust aerosol when it is respectively an inefficient, standard and a very efficient absorber. These values represent low, central and high content of iron oxides in dust determined from the mineralogical database. Linke et al. (2006) determined independently that iron-oxides represent 1.0 to 2.5% by volume using x-Ray fluorescence on 4 different samples collected over Morocco and Egypt. Based upon values of the refractive index retrieved from AERONET, we show that the best agreement between 440 and 1020 nm occurs for mineral dust internally mixed with 1.5% volume weighted hematite. This representation of mineral dust allows us to compute, using a general circulation model, a new global estimate of mineral dust perturbation between –0.47 and –0.24 Wm−2 at the top of the atmosphere, and between –0.81 and –1.13 Wm−2 at the surface for both shortwave and longwave wavelengths. The anthropogenic dust fraction is thought to account for between 10 and 50% of the total dust load present in the atmosphere. We estimate a top of the atmosphere forcing between –0.03 and –0.25 Wm−2, which is markedly different that the IPCC range of –0.6 to +0.4 Wm−2 (IPCC, 2001). The 24-h average atmospheric heating by mineral dust during summer over the tropical Atlantic region (15° N–25° N; 45° W–15° W) is in the range +22 to +32 Wm−2 τ−1 which compares well with the 30±4 Wm−2 τ−1 measured by Li et al. (2004) over that same region. The refractive indices from Patterson et al. (1977) and from Volz (1973) overestimate by a factor of 2 the energy absorbed in the column during summer over the same region. This discrepancy is due to too large absorption in the visible but we could not determine if this is linked to the sample studied by Patterson et al. (1997) or to the method used in determining the refractive index.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 361 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3