On the effect of model parameters on forecast objects

Author:

Marzban Caren,Jones Corinne,Li Ning,Sandgathe Scott

Abstract

Abstract. Many physics-based numerical models produce a gridded, spatial field of forecasts, e.g., a temperature map. The field for some quantities generally consists of spatially coherent and disconnected objects. Such objects arise in many problems, including precipitation forecasts in atmospheric models, eddy currents in ocean models, and models of forest fires. Certain features of these objects (e.g., location, size, intensity, and shape) are generally of interest. Here, a methodology is developed for assessing the impact of model parameters on the features of forecast objects. The main ingredients of the methodology include the use of (1) Latin hypercube sampling for varying the values of the model parameters, (2) statistical clustering algorithms for identifying objects, (3) multivariate multiple regression for assessing the impact of multiple model parameters on the distribution (across the forecast domain) of object features, and (4) methods for reducing the number of hypothesis tests and controlling the resulting errors. The final output of the methodology is a series of box plots and confidence intervals that visually display the sensitivities. The methodology is demonstrated on precipitation forecasts from a mesoscale numerical weather prediction model.

Funder

Office of Naval Research

Directorate for Geosciences

Publisher

Copernicus GmbH

Reference73 articles.

1. Ahijevych, D., Gilleland, D. E., Brown, B. G., and Ebert, E. E.: Application of spatial verification methods to idealized and NWP-gridded precipitation forecasts, Weather Forecast., 24, 1485–1497, 2009.

2. Backman, J., Wood, C. R., Auvinen, M., Kangas, L., Hannuniemi, H., Karppinen, A., and Kukkonen, J.: Sensitivity analysis of the meteorological preprocessor MPP-FMI 3.0 using algorithmic differentiation, Geosci. Model Dev., 10, 3793–3803, https://doi.org/10.5194/gmd-10-3793-2017, 2017.

3. Baldwin, M. E., Lakshmivarahan, S., and Kain, J. S.: Verification of mesoscale features in NWP models, in: 9th Conf. on Mesoscale Processes, Amer Meteor. Soc., Ft. Lauderdale, FL, 255–258, 2001.

4. Baldwin, M. E., Lakshmivarahan, S., and Kain, J. S.: Development of an “events-oriented” approach to forecast verification, in: 15th Conf. Numerical Weather Prediction, San Antonio, TX, 2002.

5. Banfield, J. D. and Raftery, A. E.: Model-based Gaussian and non-Gaussian clustering, Biometrics, 49, 803–821, 1993.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3