Mantle flow below the central and greater Alpine region: insights from SKS anisotropy analysis at AlpArray and permanent stations

Author:

Petrescu LauraORCID,Pondrelli SilviaORCID,Salimbeni SimoneORCID,Faccenda ManueleORCID,

Abstract

Abstract. The Alpine chain in western and central Europe is a complex orogen developed as a result of the African–Adriatic plate convergence towards the European continent and the closure of several Tethys oceanic branches. Seismic tomography studies detected high-wave-speed slabs plunging beneath the orogen to variable depths and a potential change in subduction polarity beneath the Central Alps. Alpine subduction is expected to leave a significant imprint on the surrounding mantle fabrics, although deformation associated with the Hercynian Orogeny, which affected Europe prior to the collision with Adria, may have also been preserved in the European lithosphere. Here we estimate SKS anisotropy beneath the central and greater Alpine region at 113 broadband seismic stations from the AlpArray experiment as well as permanent networks from Italy, Switzerland, Austria, Germany, and France. We compare the new improved dataset with previous studies of anisotropy, mantle tomography, lithospheric thickness, and absolute plate motion, and we carry out Fresnel analysis to place constraints on the depth and origin of anisotropy. Most SKS directions parallel the orogen strike and the orientation of the Alpine slabs, rotating clockwise from west to east along the chain, from −45 to 90∘ over a ∼700 km distance. No significant changes are recorded in Central Alps at the location of the putative switch in subduction polarity, although a change in direction variability suggests simple asthenospheric flow or coupled deformation in the Swiss Central Alps transitions into more complex structures beneath the Eastern Alps. SKS fast axes follow the trend of high seismic anomalies across the Alpine Front, far from the present-day boundary, suggesting slabs act as flow barriers to the ambient mantle surrounding them for hundreds of km. Further north across the foreland, SKS fast axes parallel Hercynian geological structures and are orthogonal to the Rhine Graben and crustal extension. However, large splitting delay times (>1.4 s) are incompatible with a purely lithospheric contribution but rather represent asthenospheric flow not related to past deformational events. West of the Rhine Graben, in northeastern France, anisotropy directions are spatially variable in the proximity of a strong positive seismic anomaly in the upper mantle, perhaps perturbing the flow field guided by the nearby Alpine slabs.

Funder

European Commission

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3