Seismic anisotropy across Adria plate, from the Apennines to the Dinarides

Author:

Salimbeni S.,Pondrelli S.,Molinari I.,Stipčević J.,Prevolnik S.,Dasović I.,

Abstract

The Adria microplate has the particular feature to be involved in two subduction systems with slab dipping in opposite directions, one toward west beneath the Apennines and the other to the east beneath the Dinarides. The deep structure of Adria and the shape and characteristics of the slabs have mainly been studied through seismic tomography. However, the uncertainty about the presence and dimensions of tear and windows along the Apennines and the Dinarides slabs is still large. An instrument that can be used to draw mantle flows and to support the possible presence of slab windows or tears is the detection of seismic anisotropy, in particular core phases shear wave splitting. In this paper, to give more light to the structure of Adria slabs and possible mantle circulation beneath this microplate, we benefit from data recorded by seismic stations located along a profile running across the central Adriatic from the Apennines to the edge of the Panonnian basin. The new measurements, together with previous findings, show an evident change of the anisotropic properties when moving along the profile. The distribution of SKS-splitting measurements in the Apennines strongly agree with previous measurements that already described the toroidal flow generated by the slab rollback of the Calabrian arc. In addition, the N-S and NE-SW directions found beneath the Apulia are in agreement with those attributed previously in the outer northern Apennines, to a proper typical pattern of the mantle beneath Adria, which is undeformed by the slab retreat. The pattern of the anisotropy in the Dinarides region shows lateral and vertical variations that together with recent tomographic images that better define the slab window allow us to speculate as follows: the new SKS measurements, interpreted in terms of mantle deformation and flows, agree with the geodynamic model that justifies the mantle circulation beneath Adria with the presence of slab windows in both the Apennines and Dinarides slabs.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3