Modelling the impact of noctilucent cloud formation on atomic oxygen and other minor constituents of the summer mesosphere

Author:

Murray B. J.,Plane J. M. C.

Abstract

Abstract. The formation, evolution and eventual sublimation of noctilucent clouds (NLC) may have a significant effect on the odd oxygen and hydrogen chemistry of the high latitude summer mesosphere. Three mechanisms are considered here: the direct uptake of atomic oxygen on the surface of the ice particles; the redistribution of water vapour, which changes the photochemical source of odd hydrogen species; and the direct photolysis of the ice particles themselves to produce odd hydrogen species in the gas phase. A 1-D photochemical model is employed to investigate the potential importance of these mechanisms. This shows, using the recently measured uptake coefficients of O on ice, that the heterogeneous removal of O on the surface of the cloud particles is too slow by at least a factor of 5x103 to compete with gas-phase O chemistry. The second and third mechanisms involve the solar Lyman-α photolysis of H2O in the gas and solid phase, respectively. During twilight, Lyman-α radiation is severely attenuated and these mechanisms are insignificant. In contrast, when the upper mesosphere is fully illuminated there is a dramatic impact on the O profile, with depletion of O at the base of the cloud layer of close to an order of magnitude. A correspondingly large depletion in O3 is also predicted, while H, OH, HO2 and H2O2 are found to be enhanced by factors of 3-5. In fact, rocket-borne mass spectrometer measurements during summer have revealed local H2O2 enhancements in the region of the clouds. Rocket-borne measurements of atomic O and O3 profiles in the presence of mesospheric clouds in the daytime are highly desirable to test the predictions of this model and our understanding of the genesis of mesospheric clouds.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3