Ephemeral Ice Clouds in the Upper Mesosphere of Venus

Author:

Murray Benjamin. J.1ORCID,Mangan Thomas. P.2ORCID,Määttänen Anni3ORCID,Plane John. M. C.2ORCID

Affiliation:

1. School of Earth and Environment University of Leeds Leeds UK

2. School of Chemistry University of Leeds Leeds UK

3. LATMOS/IPSL Sorbonne Université UVSQ Université Paris‐Saclay CNRS Paris France

Abstract

AbstractThe conditions in Venus' upper mesosphere at around 120 km have some similarities to the upper mesosphere of Earth and Mars where ice clouds form. Here we show, using published satellite products and numerical modeling, that the upper mesosphere of Venus can be sufficiently cold that both H2O and CO2 may condense to form particles. We show that amorphous solid water particles (ASW) are likely to nucleate both heterogeneously on meteoric smoke and also homogeneously, resulting in clouds of nano‐scaled particles at around 120 km that will occur globally. The temperatures may then become sufficiently low, below ∼90 K, that CO2 particles can nucleate on ASW particles. Given the uncertainty associated with retrievals of temperature in the upper mesosphere, it is unclear how frequently this occurs, but it could be >30% of the time poleward of 60°. Since the main component of Venus' tenuous atmosphere is CO2, any CO2 crystals that form will grow and sediment on a timescale of 10–20 min. Mie calculations show that these Venusian mesospheric clouds (VMCs) should be observable by contemporary satellite instruments, although their short lifetime means that the probability of detection is small. We suggest that VMCs are important for the redistribution of meteoric smoke and may serve as a cold‐trap, removing some water vapor from the very upper mesosphere of Venus through the growth and sedimentation of cloud particles, and possibly reducing the loss of water to space.

Funder

Science and Technology Facilities Council

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3