Global investigation of the Mg atom and ion layers using SCIAMACHY/Envisat observations between 70 and 150 km altitude and WACCM-Mg model results

Author:

Langowski M. P.ORCID,von Savigny C.,Burrows J. P.ORCID,Feng W.,Plane J. M. C.ORCID,Marsh D. R.ORCID,Janches D.,Sinnhuber M.ORCID,Aikin A. C.,Liebing P.

Abstract

Abstract. Mg and Mg+ concentration fields in the upper mesosphere/lower thermosphere (UMLT) region are retrieved from SCIAMACHY/Envisat limb measurements of Mg and Mg+ dayglow emissions using a 2-D tomographic retrieval approach. The time series of monthly mean Mg and Mg+ number density and vertical column density in different latitudinal regions are presented. Data from the limb mesosphere–thermosphere mode of SCIAMACHY/Envisat are used, which cover the 50 to 150 km altitude region with a vertical sampling of ≈3.3 km and latitudes up to 82°. The high latitudes are not observed in the winter months, because there is no dayglow emission during polar night. The measurements were performed every 14 days from mid-2008 until April 2012. Mg profiles show a peak at around 90 km altitude with a density between 750 cm−3 and 1500 cm−3. Mg does not show strong seasonal variation at latitudes below 40°. For higher latitudes the density is lower and only in the Northern Hemisphere a seasonal cycle with a summer minimum is observed. The Mg+ peak occurs 5–15 km above the neutral Mg peak altitude. These ions have a significant seasonal cycle with a summer maximum in both hemispheres at mid and high latitudes. The strongest seasonal variations of Mg+ are observed at latitudes between 20 and 40° and the density at the peak altitude ranges from 500 cm−3 to 4000 cm−3. The peak altitude of the ions shows a latitudinal dependence with a maximum at mid latitudes that is up to 10 km higher than the peak altitude at the equator. The SCIAMACHY measurements are compared to other measurements and WACCM model results. The WACCM results show a significant seasonal variability for Mg with a summer minimum, which is more clearly pronounced than for SCIAMACHY, and globally a higher peak density than the SCIAMACHY results. Although the peak density of both is not in agreement, the vertical column density agrees well, because SCIAMACHY and WACCM profiles have different widths. The agreement between SCIAMACHY and WACCM results is much better for Mg+ with both showing the same seasonality and similar peak density. However, there are also minor differences, e.g. WACCM showing a nearly constant altitude of the Mg+ layer's peak density for all latitudes and seasons.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3