Comparison of middle- and low-latitude sodium layer from a ground-based lidar network, the Odin satellite, and WACCM–Na model

Author:

Yu BingkunORCID,Xue XianghuiORCID,Scott Christopher J.ORCID,Jia MingjiaoORCID,Feng WuhuORCID,Plane John M. C.ORCID,Marsh Daniel R.,Hedin JonasORCID,Gumbel Jörg,Dou Xiankang

Abstract

Abstract. The ground-based measurements obtained from a lidar network and the 6-year OSIRIS (optical spectrograph and infrared imager system) limb-scanning radiance measurements made by the Odin satellite are used to study the climatology of the middle- and low-latitude sodium (Na) layer. Up to January 2021, four Na resonance fluorescence lidars at Beijing (40.5∘ N, 116.0∘ E), Hefei (31.8∘ N, 117.3∘ E), Wuhan (30.5∘ N, 114.4∘ E), and Haikou (19.5∘ N, 109.1∘ E) collected vertical profiles of Na density for a total of 2136 nights (19 587 h). These large datasets provide multi-year routine measurements of the Na layer with exceptionally high temporal and vertical resolution. The lidar measurements are particularly useful for filling in OSIRIS data gaps since the OSIRIS measurements were not made during the dark winter months because they utilize the solar-pumped resonance fluorescence from Na atoms. The observations of Na layers from the ground-based lidars and the satellite are comprehensively compared with a global model of meteoric Na in the atmosphere (WACCM–Na). The lidars present a unique test of OSIRIS and WACCM (Whole Atmosphere Community Climate Model), because they cover the latitude range along 120∘ E longitude in an unusual geographic location with significant gravity wave generation. In general, good agreement is found between lidar observations, satellite measurements, and WACCM simulations. On the other hand, the Na number density from OSIRIS is larger than that from the Na lidars at the four stations within one standard deviation of the OSIRIS monthly average, particularly in autumn and early winter arising from significant uncertainties in Na density retrieved from much less satellite radiance measurements. WACCM underestimates the seasonal variability of the Na layer observed at the lower latitude lidar stations (Wuhan and Haikou). This discrepancy suggests the seasonal variability of vertical constituent transport modelled in WACCM is underestimated because much of the gravity wave spectrum is not captured in the model.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Fundamental Research Funds for the Central Universities

Natural Environment Research Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3