Network design for quantifying urban CO<sub>2</sub> emissions: assessing trade-offs between precision and network density
-
Published:2016-11-01
Issue:21
Volume:16
Page:13465-13475
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Turner Alexander J.ORCID, Shusterman Alexis A.ORCID, McDonald Brian C., Teige Virginia, Harley Robert A., Cohen Ronald C.ORCID
Abstract
Abstract. The majority of anthropogenic CO2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO2 Observation Network (BEACO2N) in California's Bay Area, in combination with an inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km2. The model uses an hourly 1 × 1 km2 emission inventory and 1 × 1 km2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model–observing system in reducing uncertainty in CO2 emissions. We examine uncertainty in estimated CO2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.
Funder
U.S. Department of Energy National Science Foundation
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference31 articles.
1. Bastien, L. A., McDonald, B. C., Brown, N. J., and Harley, R. A.: High-resolution mapping of sources contributing to urban air pollution using adjoint sensitivity analysis: benzene and diesel black carbon, Environ. Sci. Technol., 49, 7276–7284, https://doi.org/10.1021/acs.est.5b00686, 2015. 2. Bréon, F. M., Broquet, G., Puygrenier, V., Chevallier, F., Xueref-Remy, I., Ramonet, M., Dieudonné, E., Lopez, M., Schmidt, M., Perrussel, O., and Ciais, P.: An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements, Atmos. Chem. Phys., 15, 1707–1724, https://doi.org/10.5194/acp-15-1707-2015, 2015. 3. Deschênes, O. and Greenstone, M.: Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US, American Economic Journal: Applied Economics, 3, 152–185, https://doi.org/10.1257/app.3.4.152, 2011. 4. European Commission: Emission Database for Global Atmospheric Research (EDGAR), release version 4.2, Tech. rep., Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL), 2011. 5. Gately, C. K., Hutyra, L. R., Wing, I. S., and Brondfield, M. N.: A bottom up approach to on-road CO2 emissions estimates: improved spatial accuracy and applications for regional planning, Environ. Sci. Technol., 47, 2423–30, https://doi.org/10.1021/es304238v, 2013.
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|