Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate

Author:

Xia L.ORCID,Robock A.ORCID,Tilmes S.ORCID,Neely III R. R.

Abstract

Abstract. Stratospheric sulfate geoengineering could impact the terrestrial carbon cycle by enhancing the carbon sink. With an 8 Tg yr−1 injection of SO2 to produce a stratospheric aerosol cloud to balance anthropogenic radiative forcing from the Representative Concentration Pathway 6.0 (RCP6.0) scenario, we conducted climate model simulations with the Community Earth System Model – the Community Atmospheric Model 4 fully coupled to tropospheric and stratospheric chemistry (CAM4–chem). During the geoengineering period, as compared to RCP6.0, land-averaged downward visible (300–700 nm) diffuse radiation increased 3.2 W m−2 (11 %). The enhanced diffuse radiation combined with the cooling increased plant photosynthesis by 0.07 ± 0.02 µmol C m−2 s−1, which could contribute to an additional 3.8 ± 1.1 Gt C yr−1 global gross primary productivity without explicit nutrient limitation. This increase could potentially increase the land carbon sink. Suppressed plant and soil respiration due to the cooling would reduce natural land carbon emission and therefore further enhance the terrestrial carbon sink during the geoengineering period. This potentially beneficial impact of stratospheric sulfate geoengineering would need to be balanced by a large number of potential risks in any future decisions about the implementation of geoengineering.

Funder

National Science Foundation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3