Characterising tropospheric O<sub>3</sub> and CO around Frankfurt over the period 1994–2012 based on MOZAIC–IAGOS aircraft measurements

Author:

Petetin HervéORCID,Thouret Valérie,Fontaine Alain,Sauvage BastienORCID,Athier Giles,Blot RomainORCID,Boulanger DamienORCID,Cousin Jean-Marc,Nédélec Philippe

Abstract

Abstract. In the framework of the MOZAIC–IAGOS programme, vertical profiles of ozone (O3) and carbon monoxide (CO) have been available since 1994 and 2002, respectively. This study investigates the variability and trend of both species in three tropospheric layers above the German airports Frankfurt and Munich. About 21 300 flights have taken place over the period 1994–2012, which represents the worldwide densest vertical in situ data set of O3 and CO (with  ∼  96 flights per month on average). The mean vertical profile of ozone shows a strong gradient in the first kilometre during the whole year and in the tropopause region in spring and summer. The mean vertical profile of CO is characterised by high mixing ratios at the ground, a strong decrease in the first kilometre, in particular in winter and autumn, and a moderate one in the free troposphere. O3 minimises in November–December and shows a broad spring/summer maximum in the lower and mid-troposphere and a sharp maximum in summer in the upper troposphere. The seasonal variation of CO shows a broad minimum in July–October close to the surface and in September–October it occurs higher in the troposphere, while the maximum occurs in February–April in the whole troposphere. Over the period 1994–2012, O3 has changed insignificantly (at a 95 % confidence level), except in winter where a slightly significant increase (from +0.83 [+0.13;+1.67] % yr−1 in the LT to +0.62 [+0.02;+1.22] % yr−1 in the UT, relative to the reference year 2000) is found. The O3 5th percentile shows similar upward trends at the annual scale in all three tropospheric layers. All trends remain insignificant for the O3 95th percentile. In contrast, for CO the mean as well as its 5th and 95th percentiles decrease both at the annual scale and at the seasonal scale in winter, spring and summer (although not always in all three tropospheric layers) with trends ranging between −1.22 [−2.27;−0.47] and −2.63 [−4.54;−1.42] % yr−1, relative to the reference year 2004. However, all CO trends remain insignificant in autumn. The phase of the seasonal variation of O3 was found to change in the troposphere. The O3 maxima moves forward in time at a rate of −17.8 ± 11.5 days decade−1 in the lower troposphere, in general agreement with previous studies. Interestingly, this seasonal shift is shown to persist in the mid-troposphere (−7.8 ± 4.2 days decade−1) but turns insignificant in the upper troposphere.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3