Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS)
-
Published:2016-02-16
Issue:3
Volume:16
Page:1789-1808
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Kim M., Kim J.ORCID, Jeong U., Kim W., Hong H., Holben B.ORCID, Eck T. F., Lim J. H., Song C. K., Lee S., Chung C.-Y.
Abstract
Abstract. An aerosol model optimized for northeast Asia is updated with the inversion data from the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-northeast (NE) Asia campaign which was conducted during spring from March to May 2012. This updated aerosol model was then applied to a single visible channel algorithm to retrieve aerosol optical depth (AOD) from a Meteorological Imager (MI) on-board the geostationary meteorological satellite, Communication, Ocean, and Meteorological Satellite (COMS). This model plays an important role in retrieving accurate AOD from a single visible channel measurement. For the single-channel retrieval, sensitivity tests showed that perturbations by 4 % (0.926 ± 0.04) in the assumed single scattering albedo (SSA) can result in the retrieval error in AOD by over 20 %. Since the measured reflectance at the top of the atmosphere depends on both AOD and SSA, the overestimation of assumed SSA in the aerosol model leads to an underestimation of AOD. Based on the AErosol RObotic NETwork (AERONET) inversion data sets obtained over East Asia before 2011, seasonally analyzed aerosol optical properties (AOPs) were categorized by SSAs at 675 nm of 0.92 ± 0.035 for spring (March, April, and May). After the DRAGON-NE Asia campaign in 2012, the SSA during spring showed a slight increase to 0.93 ± 0.035. In terms of the volume size distribution, the mode radius of coarse particles was increased from 2.08 ± 0.40 to 2.14 ± 0.40. While the original aerosol model consists of volume size distribution and refractive indices obtained before 2011, the new model is constructed by using a total data set after the DRAGON-NE Asia campaign. The large volume of data in high spatial resolution from this intensive campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the new AOD data sets retrieved from a single-channel algorithm, which uses a precalculated look-up table (LUT) with the new aerosol model, show an improved correlation with the measured AOD during the DRAGON-NE Asia campaign. The correlation between the new AOD and AERONET value shows a regression slope of 1.00, while the comparison of the original AOD data retrieved using the original aerosol model shows a slope of 1.08. The change of y-offset is not significant, and the correlation coefficients for the comparisons of the original and new AOD are 0.87 and 0.85, respectively. The tendency of the original aerosol model to overestimate the retrieved AOD is significantly improved by using the SSA values in addition to size distribution and refractive index obtained using the new model.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference55 articles.
1. Bevan, S. L., North, P. R. J., Los, S. O., and Grey, W. M. F.: A global
dataset of atmospheric aerosol optical depth and surface reflectance from
AATSR, Remote Sens. Environ., 116, 199–210, https://doi.org/10.1016/j.rse.2011.05.024,
2012. 2. Castanho, A. D. D. A., Martins, J. V., and Artaxo, P.: MODIS aerosol optical
depth Retrievals with high spatial resolution over an urban area using the
critical reflectance, J. Geophys. Res.-Atmos., 113, D02201,
https://doi.org/10.1029/2007jd008751, 2008. 3. Choi, M., Kim, J., Lee, J., Kim, M., Je Park, Y., Jeong, U., Kim, W., Holben,
B., Eck, T. F., Lim, J. H., and Song, C. K.: GOCI Yonsei Aerosol Retrieval
(YAER) algorithm and validation during DRAGON-NE Asia 2012 campaign, Atmos.
Meas. Tech. Discuss., 8, 9565–9609, https://doi.org/10.5194/amtd-8-9565-2015, 2015. 4. Deroubaix, A., Martiny, N., Chiapello, I., and Marticorena, B.: Suitability
of OMI aerosol index to reflect mineral dust surface conditions: Preliminary
application for studying the link with meningitis epidemics in the sahel,
Remote Sens. Environ., 133, 116–127, https://doi.org/10.1016/j.rse.2013.02.009, 2013. 5. Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of
aerosol optical properties from Sun and sky radiance measurements, J.
Geophys. Res.-Atmos., 105, 20673–20696, https://doi.org/10.1029/2000jd900282, 2000.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|