First atmospheric aerosol-monitoring results from the Geostationary Environment Monitoring Spectrometer (GEMS) over Asia

Author:

Cho Yeseul,Kim JhoonORCID,Go SujungORCID,Kim Mijin,Lee Seoyoung,Kim MinseokORCID,Chong HeesungORCID,Lee Won-Jin,Lee Dong-Won,Torres Omar,Park Sang Seo

Abstract

Abstract. Aerosol optical properties have been provided by the Geostationary Environment Monitoring Spectrometer (GEMS), the world's first geostationary-Earth-orbit (GEO) satellite instrument designed for air quality monitoring. This study describes improvements made to the GEMS aerosol retrieval (AERAOD) algorithm, including spectral binning, surface reflectance estimation, cloud masking, and post-processing, along with validation results. These enhancements aim to provide more accurate and reliable aerosol-monitoring results for Asia. The adoption of spectral binning in the lookup table (LUT) approach reduces random errors and enhances the stability of satellite measurements. In addition, we introduced a new high-resolution database for surface reflectance estimation based on the minimum-reflectance method, which was adapted to the GEMS pixel resolution. Monthly background aerosol optical depth (BAOD) values were used to estimate hourly GEMS surface reflectance consistently. Advanced cloud-removal techniques have been implemented to significantly improve the effectiveness of cloud detection and enhance aerosol retrieval quality. An innovative post-processing correction method based on machine learning has been introduced to address artificial diurnal biases in aerosol optical depth (AOD) observations. In this study, we investigated selected aerosol events, highlighting the capability of GEMS in monitoring and providing insights into hourly aerosol optical properties during various atmospheric events. The performance of the GEMS AERAOD products was validated against the Aerosol Robotic Network (AERONET) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data for the period from November 2021 to October 2022. GEMS AOD at 443 nm demonstrated a strong correlation with AERONET AOD at 443 nm (R = 0.792). However, it exhibited biased patterns, including the underestimation of high AOD values and overestimation of low-AOD conditions. Different aerosol types (highly absorbing fine aerosols, dust aerosols, and non-absorbing aerosols) exhibited distinct validation results. The retrievals of GEMS single-scattering albedo (SSA) at 443 nm agreed well with the AERONET SSA at 440 nm within reasonable error ranges, with variations observed among aerosol types. For GEMS AOD at 443 nm exceeding 0.4 (1.0), 42.76 % (56.61 %) and 67.25 % (85.70 %) of GEMS SSA data points fell within the ±0.03 and ±0.05 error bounds, respectively. Model-enforced post-processing correction improved GEMS AOD and SSA performance, thereby reducing the diurnal variation in the biases. The validation of the retrievals of GEMS aerosol layer height (ALH) against the CALIOP data demonstrates good agreement, with a mean bias of −0.225 km and 55.29 % (71.70 %) of data points falling within ±1 km (1.5 km).

Funder

National Institute of Environmental Research

Publisher

Copernicus GmbH

Reference69 articles.

1. Ahn, C., Torres, O., and Jethva, H.: Assessment of OMI near-UV aerosol optical depth over land, J. Geophys. Res.-Atmos., 119, 2457–2473, https://doi.org/10.1002/2013jd020188, 2014.

2. Ceamanos, X., Six, B., Moparthy, S., Carrer, D., Georgeot, A., Gasteiger, J., Riedi, J., Attié, J.-L., Lyapustin, A., and Katsev, I.: Instantaneous aerosol and surface retrieval using satellites in geostationary orbit (iAERUS-GEO) – estimation of 15 min aerosol optical depth from MSG/SEVIRI and evaluation with reference data, Atmos. Meas. Tech., 16, 2575–2599, https://doi.org/10.5194/amt-16-2575-2023, 2023.

3. Choi, M., Kim, J., Lee, J., Kim, M., Park, Y.-J., Holben, B., Eck, T. F., Li, Z., and Song, C. H.: GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia, Atmos. Meas. Tech., 11, 385–408, https://doi.org/10.5194/amt-11-385-2018, 2018.

4. Curier, R. L., Veefkind, J. P., Braak, R., Veihelmann, B., Torres, O., and de Leeuw, G.: Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm: Application to western Europe, J. Geophys. Res.-Atmos., 113, D17S90, https://doi.org/10.1029/2007JD008738, 2008.​​​​​​​

5. Dobber, M., Kleipool, Q., Dirksen, R., Levelt, P., Jaross, G., Taylor, S., Kelly, T., Flynn, L., Leppelmeier, G., and Rozemeijer, N.: Validation of Ozone Monitoring Instrument level 1b data products, J. Geophys. Res., 113, D15S06, https://doi.org/10.1029/2007jd008665, 2008.​​​​​​​

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3