Author:
Zhang Z.,Yang P.,Kattawar G.,Riedi J.,-Labonnote L. C.,Baum B. A.,Platnick S.,Huang H.-L.
Abstract
Abstract. The influence is investigated of the assumed ice particle microphysical and optical model on inferring ice cloud optical thickness (τ) from satellite measurements of the Earth's reflected shortwave radiance. Ice cloud τ are inferred, and subsequently compared, using products from MODIS (MODerate resolution Imaging Spectroradiometer) and POLDER (POLarization and Directionality of the Earth's Reflectances). POLDER τ values are found to be substantially smaller than those from collocated MODIS data. It is shown that this difference is caused primarily by the use of different ice particle bulk scattering models in the two retrievals, and more specifically, the scattering phase function. Furthermore, the influence of the ice particle model on the derivation of ice cloud radiative forcing (CRF) from satellite retrievals is studied. Three sets of shortwave CRF are calculated using different combinations of the retrieval and associated ice particle models. It is shown that the uncertainty associated with an ice particle model may lead to two types of errors in estimating CRF from satellite retrievals. One stems from the retrieval itself and the other is due to the optical properties, such as the asymmetry factor, used for CRF calculations. Although a comparison of the CRFs reveals that these two types of errors tend to cancel each other, significant differences are still found between the three CRFs, which indicates that the ice particle model affects not only optical thickness retrievals but also CRF calculations. In addition to CRF, the effect of the ice particle model on the derivation of seasonal variation of τ from satellite measurements is discussed. It is shown that optical thickness retrievals based on the same MODIS observations, but derived using different assumptions of the ice particle model, can be substantially different. These differences can be divided into two parts. The first-order difference is mainly caused by the differences in the asymmetry factor. The second-order difference is related to seasonal changes in the sampled scattering angles and therefore dependent on the sun-satellite viewing geometry. Because of this second-order difference, the use of different ice particle models may lead to a different understanding of the seasonal variation of τ.
Reference87 articles.
1. Baran, A. J., Watts, P. D., and Francis, P. N.: Testing the coherence of cirrus microphysical and bulk properties retreived from dual-viewing multispectral satellite radiance measurements, J. Geophys. Res., 104, 31673–31683, 1999.
2. Baran, A. J., Francis, P. N., Labonnote, L. C., and Doutriaux-Boucher, M.: A scattering phase function for ice cloud: Tests of applicability using aircraft and satellite multi-angle multi-wavelength radiance measurements of cirrus, Q. J. Roy. Meteor. Soc., 127, 2395–2416, 2001.
3. Baran, A. J. and Francis, P. N.: On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurements, Q. J. Roy. Meteor. Soc., 130, 763–778, 2004.
4. Baran, A. J. and Labonnote, L. C.: On the reflection and polarisation properties of ice cloud, JQSRT, 100, 41–54, 2006.
5. Baran, A. J. and Labonnote, L. C.: A self-consistent scattering model for cirrus. I: The solar region, Q. J. Roy. Meteor. Soc., 133, 1899–1912, 2007.
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献