Mixing layer height retrievals by multichannel microwave radiometer observations

Author:

Cimini D.ORCID,De Angelis F.,Dupont J.-C.,Pal S.,Haeffelin M.

Abstract

Abstract. The mixing layer height (MLH) is a key parameter for boundary layer studies, including meteorology, air quality, and climate. MLH estimates are inferred from in situ radiosonde measurements or remote sensing observations from instruments like lidar, wind profiling radar, or sodar. Methods used to estimate MLH from radiosonde profiles are also used with atmospheric temperature and humidity profiles retrieved by microwave radiometers (MWR). This paper proposes an alternative approach to estimate MLH from MWR data, based on direct observations (brightness temperatures, Tb) instead of retrieved profiles. To our knowledge, MLH estimates directly from Tb observations has never been attempted before. The method consists of a multivariate linear regression trained with an a priori set of collocated MWR Tb observations (multi-frequency and multi-angle) and MLH estimates from a state-of-the-art lidar system. Results show that the method is able to follow both the diurnal cycle and the day-to-day variability as suggested by the lidar measurements, and also it can detect low MLH values that are below the full overlap limit (~ 200 m) of the lidar system used. Statistics of the comparison between MWR- and reference lidar-based MLH retrievals show mean difference within 10 m, RMS within 340 m, and correlation coefficient higher than 0.77. Monthly mean analysis for day-time MLH from MWR, lidar, and radiosonde shows consistent seasonal variability, peaking at ~ 1200–1400 m in June and decreasing down to ~ 600 m in October. Conversely, night-time monthly mean MLH from all methods are within 300–500 m without any significant seasonal variability. The proposed method provides results that are more consistent with radiosonde estimates than MLH estimates from MWR retrieved profiles. MLH monthly mean values agree well within 1 std with bulk Richardson number method applied at radiosonde profiles at 11:00 and 23:00 UTC. The method described herewith operates continuously and it is expected to work with analogous performances for the entire diurnal cycle, except during considerable precipitation, demonstrating new potential for atmospheric observation by ground-based microwave radiometry.

Funder

European Commission

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3