Regional-scale paleofluid system across the Tuscan Nappe–Umbria–Marche Apennine Ridge (northern Apennines) as revealed by mesostructural and isotopic analyses of stylolite–vein networks

Author:

Beaudoin Nicolas E.ORCID,Labeur Aurélie,Lacombe Olivier,Koehn Daniel,Billi AndreaORCID,Hoareau Guilhem,Boyce AdrianORCID,John Cédric M.,Marchegiano Marta,Roberts Nick M.ORCID,Millar Ian L.,Claverie FannyORCID,Pecheyran Christophe,Callot Jean-Paul

Abstract

Abstract. We report the results of a multiproxy study that combines structural analysis of a fracture–stylolite network and isotopic characterization of calcite vein cements and/or fault coating. Together with new paleopiezometric and radiometric constraints on burial evolution and deformation timing, these results provide a first-order picture of the regional fluid systems and pathways that were present during the main stages of contraction in the Tuscan Nappe and Umbria–Marche Apennine Ridge (northern Apennines). We reconstruct four steps of deformation at the scale of the belt: burial-related stylolitization, Apenninic-related layer-parallel shortening with a contraction trending NE–SW, local extension related to folding, and late-stage fold tightening under a contraction still striking NE–SW. We combine the paleopiezometric inversion of the roughness of sedimentary stylolites – that constrains the range of burial depth of strata prior to layer-parallel shortening – with burial models and U–Pb absolute dating of fault coatings in order to determine the timing of development of mesostructures. In the western part of the ridge, layer-parallel shortening started in Langhian time (∼15 Ma), and then folding started at Tortonian time (∼8 Ma); late-stage fold tightening started by the early Pliocene (∼5 Ma) and likely lasted until recent/modern extension occurred (∼3 Ma onward). The textural and geochemical (δ18O, δ13C, Δ47CO2 and 87Sr∕86Sr) study of calcite vein cements and fault coatings reveals that most of the fluids involved in the belt during deformation either are local or flowed laterally from the same reservoir. However, the western edge of the ridge recorded pulses of eastward migration of hydrothermal fluids (>140 ∘C), driven by the tectonic contraction and by the difference in structural style of the subsurface between the eastern Tuscan Nappe and the Umbria–Marche Apennine Ridge.

Funder

Agence Nationale de la Recherche

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3