Regional Scale, Fault‐Related Fluid Circulation in the Ionian Zone of the External Hellenides Fold‐And‐Thrust Belt, Western Greece: Clues for Fluid Flow in Fractured Carbonate Reservoirs

Author:

Smeraglia Luca1ORCID,Bernasconi Stefano2ORCID,Manniello Canio3ORCID,Spanos Dimitris4,Pagoulatos Aristotelis4,Aldega Luca5ORCID,Kylander‐Clark Andrew6ORCID,Jaggi Madalina2,Agosta Fabrizio37ORCID

Affiliation:

1. CNR‐IGAG National Research Council of Italy Rome Italy

2. Geological Institute ETH‐Zürich Zurich Switzerland

3. Università della Basilicata Potenza Italy

4. Hellenic Petroleum Athen Greece

5. Università La Sapienza Rome Italy

6. Department of Earth Science University of California Santa Barbara CA USA

7. GeoSmart Italia srls Potenza Italy

Abstract

AbstractWe combined field mapping, structural and microstructural analyses, stable‐clumped isotope geochemistry, and U‐Pb dating of calcite veins and syn‐tectonic slickenfibres, to assess the regional scale fault‐related fluid flow during the evolution of the External Hellenides fold‐and‐thrust belt. We show that fluid circulation during forebulge uplift was characterized by cold meteoric water‐derived fluids, from which calcite precipitated and sealed bed‐perpendicular joints. Fluid circulation during foreland flexuring and early layer‐parallel shortening was characterized by warm fluids buffered by the carbonate host rock, which circulated through normal faults and bed‐parallel veins. Mixing with meteoric‐derived fluids also occurred at this stage of tectonic evolution. Fluid circulation during the late stage of thrust wedge accretion and post‐orogenic extension at 1.6 ± 1 Ma was characterized by increasing dominance of cold meteoric water circulating in strike‐slip and normal faults. The ingress of meteoric‐derived fluids was controlled by throughgoing fault conduits, while host rock‐buffered fluids were confined in isolated structures such as minor faults and veins. We developed a conceptual model of fault‐related fluid circulation, which invokes a transition from an open fluid system during forebulge uplift, to a semi‐closed fluid system during foreland flexuring and early layer‐parallel shortening, and to an open system during late thrust wedge accretion and post‐orogenic extension. This type of fluid circulation may have impacted fluid migration/leakage, including hydrocarbons, into or outside potential reservoirs in the highly prospective Hellenides‐Albanides fold‐and‐thrust belt, a renovated frontier for hydrocarbon exploration in the Mediterranean area.

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3