Processes controlling the annual cycle of Arctic aerosol number and size distributions
-
Published:2016-03-21
Issue:6
Volume:16
Page:3665-3682
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Croft BettyORCID, Martin Randall V.ORCID, Leaitch W. Richard, Tunved Peter, Breider Thomas J., D'Andrea Stephen D., Pierce Jeffrey R.ORCID
Abstract
Abstract. Measurements at high-Arctic sites (Alert, Nunavut, and Mt. Zeppelin, Svalbard) during the years 2011 to 2013 show a strong and similar annual cycle in aerosol number and size distributions. Each year at both sites, the number of aerosols with diameters larger than 20 nm exhibits a minimum in October and two maxima, one in spring associated with a dominant accumulation mode (particles 100 to 500 nm in diameter) and a second in summer associated with a dominant Aitken mode (particles 20 to 100 nm in diameter). Seasonal-mean aerosol effective diameter from measurements ranges from about 180 in summer to 260 nm in winter. This study interprets these annual cycles with the GEOS-Chem-TOMAS global aerosol microphysics model. Important roles are documented for several processes (new-particle formation, coagulation scavenging in clouds, scavenging by precipitation, and transport) in controlling the annual cycle in Arctic aerosol number and size. Our simulations suggest that coagulation scavenging of interstitial aerosols in clouds by aerosols that have activated to form cloud droplets strongly limits the total number of particles with diameters less than 200 nm throughout the year. We find that the minimum in total particle number in October can be explained by diminishing new-particle formation within the Arctic, limited transport of pollution from lower latitudes, and efficient wet removal. Our simulations indicate that the summertime-dominant Aitken mode is associated with efficient wet removal of accumulation-mode aerosols, which limits the condensation sink for condensable vapours. This in turn promotes new-particle formation and growth. The dominant accumulation mode during spring is associated with build up of transported pollution from outside the Arctic coupled with less-efficient wet-removal processes at colder temperatures. We recommend further attention to the key processes of new-particle formation, interstitial coagulation, and wet removal and their delicate interactions and balance in size-resolved aerosol simulations of the Arctic to reduce uncertainties in estimates of aerosol radiative effects on the Arctic climate.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference69 articles.
1. Adams, P. J. and Seinfeld, J. H.: Predicting global aerosol size
distributions in general circulation models, J. Geophys. Res., 107,
4310–4370, 2002. 2. Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness,
Science, 245, 1227–1230, 1989. 3. Allan, J. D., Williams, P. I., Najera, J., Whitehead, J. D., Flynn, M. J.,
Taylor, J. W., Liu, D., Darbyshire, E., Carpenter, L. J., Chance, R.,
Andrews, S. J., Hackenberg, S. C., and McFiggans, G.: Iodine observed in new
particle formation events in the Arctic atmosphere during ACCACIA, Atmos.
Chem. Phys., 15, 5599–5609, https://doi.org/10.5194/acp-15-5599-2015, 2015. 4. Baranizadeh, E., Murphy, B. N., Julin, J., Falahat, S., Reddington, C. L.,
Arola, A., Mikkonen, S., Fountoukis, C., Patoulias, D., Minikin, A.,
Hambuger, T., Laaksonen, A., Pandis, S. N., Vehkamäki, H., Lehtinen, K.
E. J., and Riipinen, I.: Implementation of state-of-the-art ternary new
particle formation scheme to the regional chemical transport model PMCAMx-UF
in Europe, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-21, in review,
2016. 5. Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A.
M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling
of tropospheric chemistry with assimilated meteorology: Model description and
evaluation, J. Geophys. Res., 106, 23073, https://doi.org/10.1029/2001JD000807, 2001.
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|