Upgrade of LSA-SAF Meteosat Second Generation daily surface albedo (MDAL) retrieval algorithm incorporating aerosol correction and other improvements

Author:

Juncu DanielORCID,Ceamanos Xavier,Trigo Isabel F.ORCID,Gomes Sandra,Freitas Sandra C.

Abstract

Abstract. MDAL is the operational Meteosat Second Generation (MSG)-derived daily surface albedo product that has been generated and disseminated in near real time by EUMETSAT Satellite Application Facility for Land Surface Analysis (LSA-SAF) since 2005. We propose and evaluate an update to the MDAL retrieval algorithm which introduces the accounting for aerosol effects as well as other scientific developments: pre-processing recalibration of radiances acquired by the SEVIRI instrument aboard MSG and improved coefficients for atmospheric correction as well as for albedo conversion from narrow- to broadband. We compare the performance of MDAL broadband albedos pre- and post-upgrade with respect to three types of reference data: the EPS Ten-Day Albedo product ETAL is used as the primary reference, while albedo derived from in situ flux measurements acquired by ground stations and MODIS MCD43D albedo data are used to complete the validation. For the comparison to ETAL – conducted over the whole coverage area of SEVIRI – we see a reduction in average white-sky albedo mean bias error (MBE) from −0.02 to negligible levels (<0.001) and a reduction in average mean absolute error (MAE) from 0.034 to 0.026 (−24 %). Improvements can be seen for black-sky albedo as well, albeit less pronounced (14 % reduction in MAE). Further analysis distinguishing individual seasons, regions and land covers show that performance changes have spatial and temporal dependence: for white-sky albedo we see improvements over almost all regions and seasons relative to ETAL, except for Eurasia in winter; resolved by land cover we see a similar effect with improvements for all types for all seasons except winter, where some types exhibit slightly worse results (crop-, grass- and shrublands). For black-sky albedo we similarly see improvements for all seasons when averaged over the full data set, although sub-regions exhibit clear seasonal dependence: the performance of the upgraded MDAL version is generally diminished in local winter but better in local summer. The comparison with in situ observations is less conclusive due to the well-known problem of the spatial representativeness of near-ground observations with respect to satellite pixel footprint sizes. Comparison with MODIS at the same locations shows mixed results in terms of change in performance following the proposed upgrade but proves the good quality of the MDAL products in general. Based on the evidence presented in this study, we consider the updated algorithm version to be able to deliver a valuable improvement of the operational MDAL product. This improvement is two-fold: primarily, there is the refinement of the albedo values themselves; secondarily, the increased alignment with the ETAL product is beneficial for those who wish to exploit synergies between EUMETSAT's geostationary and polar satellites to generate data sets based on the LSA-SAF albedo products from the two different missions.

Funder

European Organization for the Exploitation of Meteorological Satellites

Publisher

Copernicus GmbH

Subject

Atmospheric Science,Geology,Oceanography

Reference40 articles.

1. Arboleda, A., Ghilain, N., and Gellens-Meulenberghs, F.: Continuous monitoring of evapotranspiration (ET) overview of LSA-SAF evapotranspiration products, in: Remote Sensing for Agriculture, Ecosystems, and Hydrology XIX, Vol. 10421, 104210E, International Society for Optics and Photonics, https://doi.org/10.1117/12.2278249, 2017. a

2. Becerril-Piña, R., Díaz-Delgado, C., Mastachi-Loza, C. A., and González-Sosa, E.: Integration of remote sensing techniques for monitoring desertification in Mexico, Hum. Ecol. Risk Assess., 22, 1323–1340, https://doi.org/10.1080/10807039.2016.1169914, 2016. a

3. Carrer, D., Roujean, J.-L., and Meurey, C.: Comparing Operational MSG/SEVIRI Land Surface Albedo Products From Land SAF With Ground Measurements and MODIS, IEEE T. Geosci. Remote Sens., 48, 1714–1728, https://doi.org/10.1109/TGRS.2009.2034530, 2010. a

4. Carrer, D., Pinault, F., Lellouch, G., Trigo, I. F., Benhadj, I., Camacho, F., Ceamanos, X., Moparthy, S., Munoz-Sabater, J., Schüller, L., and Sánchez-Zapero, J.: Surface Albedo Retrieval from 40-Years of Earth Observations through the EUMETSAT/LSA SAF and EU/C3S Programmes: The Versatile Algorithm of PYALUS, Remote Sensing, 13, 372, https://doi.org/10.3390/rs13030372, 2021. a

5. Ceamanos, X., Carrer, D., and Roujean, J.-L.: Improved retrieval of direct and diffuse downwelling surface shortwave flux in cloudless atmosphere using dynamic estimates of aerosol content and type: application to the LSA-SAF project, Atmos. Chem. Phys., 14, 8209–8232, https://doi.org/10.5194/acp-14-8209-2014, 2014. a

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3