The role of organic condensation on ultrafine particle growth during nucleation events
-
Published:2015-06-11
Issue:11
Volume:15
Page:6337-6350
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Patoulias D., Fountoukis C.ORCID, Riipinen I., Pandis S. N.
Abstract
Abstract. A new aerosol dynamics model (DMANx) has been developed that simulates aerosol size/composition distribution and includes the condensation of organic vapors on nanoparticles through the implementation of the recently developed volatility basis set framework. Simulations were performed for Hyytiälä (Finland) and Finokalia (Greece), two locations with different organic sources where detailed measurements were available to constrain the new model. We investigate the effect of condensation of organics and chemical aging reactions of secondary organic aerosol (SOA) precursors on ultrafine particle growth and particle number concentration during a typical springtime nucleation event in both locations. This work highlights the importance of the pathways of oxidation of biogenic volatile organic compounds and the production of extremely low volatility organics. At Hyytiälä, organic condensation dominates the growth process of new particles. The low-volatility SOA contributes to particle growth during the early growth stage, but after a few hours most of the growth is due to semi-volatile SOA. At Finokalia, simulations show that organics have a complementary role in new particle growth, contributing 45% to the total mass of new particles. Condensation of organics increases the number concentration of particles that can act as CCN (cloud condensation nuclei) (N100) by 13% at Finokalia and 25% at Hyytiälä during a typical spring day with nucleation. The sensitivity of our results to the surface tension used is discussed.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference103 articles.
1. Aalto, P., Hameri, K., Becker, E., Weber, R., Salm. J., Makela, J. M., Hoell, C., O'Dowd, C., Karlsson, H., Hansson, H. C., Vakeva, M., Koponen, I., Buzorius, G., and Kulmala, M.: Physical characterization of aerosol particles during nucleation events, Tellus, 53B, 344–358, 2001. 2. Adams, P. J. and Seinfeld, J. H.: Predicting global aerosol size distributions in general circulation models, J. Geophys. Res., 107, 4370, https://doi.org/10.1029/2001JD001010, 2002. 3. Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989. 4. Almeida, J., Schobesberger, S., Kurten, A., Ortega, I. K., Kupiainen-Maatta, O., Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M., Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurten, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppa, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T., Onnela, A., Petaja, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M., Sipila, M., Stozhkov, Y., Stratmann, F., Tome, A., Trostl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D. R., Vehkamaki, H., and Kirkby, J.: Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere, Nature, 502, 359–363, 2013. 5. Anttila, T. and Kerminen, V.: Condensational growth of atmospheric nuclei by organic vapours, J. Aerosol Sci., 34, 41–61, 2003.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|