Measurements of aerosol absorption and scattering in the Mexico City Metropolitan Area during the MILAGRO field campaign: a comparison of results from the T0 and T1 sites

Author:

Marley N. A.,Gaffney J. S.,Castro T.,Salcido A.,Frederick J.

Abstract

Abstract. In March 2006, a multiagency field campaign was undertaken in Mexico City called the Megacities Initiative: Local and Global Research Observations (MILAGRO). Two of the five field components of the MILAGRO study focused a major part of their efforts on atmospheric particulate emissions from the Mexico City basin and their effects on radiative balance as a function of time, location and processing conditions. As part of these two MILAGRO components, measurements of aerosol optical properties were obtained at a site located in the northern part of Mexico City (T0) and also at a site located 29 km northwest (T1) to estimate the regional effects of aerosol emissions from the basin. Measurements of aerosol absorption and scattering for fine mode aerosols were obtained at both sites. Aerosol absorption at 550 nm was similar at both sites, ranging from 7–107 Mm−1 at T0 and from 3–147 Mm−1 at T1. Aerosol scattering measured at 550 nm at T0 ranged from 16–344 Mm−1 while the aerosol scattering values at T1 were much lower than at T0 ranging from 2–136 Mm−1. Aerosol single scattering albedos (SSAs) were calculated at 550 nm for the fine mode aerosols at both sites using these data. The SSAs at T0 ranged from 0.47–0.92 while SSAs at T1 ranged from 0.35–0.86. The presence of these highly absorbing fine aerosols in the lower atmosphere of the Mexico City area will result in a positive climate forcing and a local warming of the boundary layer in the region. Broadband UVB intensity was found to be higher at site T0, with an average of 64 μW/cm2 at solar noon, than at site T1, which had an average of 54 μW/cm2 at solar noon. Comparisons of clear-sky modeled UVB intensities with the simultaneous UVB measurements obtained at sites T0 and T1 for cloudless days indicate a larger diffuse radiation field at site T0 than at site T1. The determination of aerosol Ångstrom scattering coefficients at T0 suggests that this is due to the predominance of aerosols in the size range of 0.3 micron, which leads to scattering of UVB radiation peaked in the forward direction and to an enhanced UVB radiation observed at ground level. This enhancement of the UVB diffuse radiation field would explain the enhanced photochemistry observed in the Mexico City area despite the reduction in UVB anticipated from light absorbing species.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3