Experience from Integrated Air Quality Management in the Mexico City Metropolitan Area and Singapore

Author:

Molina ,Velasco ,Retama ,Zavala

Abstract

More than half of the world’s population now lives in cities as a result of unprecedented urbanization during the second half of the 20th century. The urban population is projected to increase to 68% by 2050, with most of the increase occurring in Asia and Africa. Population growth and increased energy consumption in urban areas lead to high levels of atmospheric pollutants that harm human health, cause regional haze, damage crops, contribute to climate change, and ultimately threaten the society’s sustainability. This article reviews the air quality and compares the policies implemented in the Mexico City Metropolitan Area (MCMA) and Singapore and offers insights into the complexity of managing air pollution to protect public health and the environment. While the differences in the governance, economics, and culture of the two cities greatly influence the decision-making process, both have made much progress in reducing concentrations of harmful pollutants by implementing comprehensive integrated air quality management programs. The experience and the lessons learned from the MCMA and Singapore can be valuable for other urban centers, especially in the fast-growing Asia-Pacific region confronting similar air pollution problems.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference210 articles.

1. The World’s Cities in 2018: Data Booklet,2018

2. 9 out of 10 People Worldwide Breathe Polluted Air, but More Countries Are Taking Actionhttps://www.who.int/news-room/detail/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action

3. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease,2016

4. State of Global Air 2019http://stateofglobalair.org/

5. Data—World Bank Open Datahttps://data.worldbank.org/indicator/NY.GDP.PCAP.CD

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3