Extreme wind turbine response extrapolation with the Gaussian mixture model

Author:

Zhang XiaodongORCID,Dimitrov Nikolay

Abstract

Abstract. The wind turbine extreme response estimation based on statistical extrapolation necessitates using a minimal number of simulations to calculate a low exceedance probability. The target exceedance probability associated with a 50-year return period is 3.8×10-7, which is challenging to evaluate with a small prediction error. The situation is further complicated by the fact that the distribution of the wind turbine response might be multimodal, and the extremes belong to a different statistical population than the main body of the distribution. Traditional theoretical probability distributions, mostly unimodal, may not be suitable for this task. The problem could be alleviated by applying a fit specifically on the tail of the distribution. Yet, a single unimodal distribution may not be sufficient for modeling diverse wind turbine responses, and an inappropriate distribution model could lead to significant prediction errors, including bias and variance errors. The Gaussian mixture model, a probabilistic and flexible mixture distribution model used extensively for clustering and density estimation tasks, is infrequently applied in the wind energy sector. This paper proposes using the Gaussian mixture model to extrapolate extreme wind turbine responses. The performance of two approaches is evaluated: (1) parametric fitting first and aggregation afterward and (2) data aggregation first followed by fitting. Different distribution models are benchmarked against the Gaussian mixture model. The results show that the Gaussian mixture model is capable of estimating a low exceedance probability with minor bias error, even with limited simulation data, and demonstrates flexibility in modeling the distributions of varying response variables.

Funder

Energistyrelsen

Publisher

Copernicus GmbH

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3