A New Perspective on Offshore Wind Turbine Certification Using High Performance Computing

Author:

Papi Francesco,Bianchini Alessandro

Abstract

Abstract A correct estimation of fatigue and ultimate loads on the structure is key for wind turbine design and certification. In a greater perspective, wind turbines are large structures placed in the natural environment and are thus subject to environmental loads that are stochastic in nature. In the case of offshore turbines, the design space is even vaster, as wind speed, turbulence intensity, wave height and period, and wind/wave direction need to be considered. Due to this complexity, standardization is a challenge, and current design standards prescribe load calculations to be performed on a site-per-site basis. Performing this task requires obtaining a long-term statistical representation of the installation site, which can be complex. Moreover, this process is affected by uncertainties. This work explores an alternative to this approach, i.e., partially, or entirely simulating the lifetime of the offshore asset. Results show how this method can reliably predict fatigue loads even using as little as one year of data. On the other hand, prediction of extreme loads is influenced by the sample size and time-period.

Publisher

IOP Publishing

Reference28 articles.

1. Grand challenges in the design, manufacture, and operation of future wind turbine systems

2. TS 61400-3-1, Wind energy generation systems - Part 3-1: Design requirements for fixed offshore wind turbines;IEC,2019

3. Design Load Analysis of Two Floating Offshore Wind Turbine Concepts;Stewart,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3