Modulation of radiative aerosols effects by atmospheric circulation over the Euro-Mediterranean region

Author:

Nabat Pierre,Somot Samuel,Cassou Christophe,Mallet Marc,Michou Martine,Bouniol Dominique,Decharme BertrandORCID,Drugé Thomas,Roehrig Romain,Saint-Martin DavidORCID

Abstract

Abstract. The present work aims at better understanding regional climate–aerosol interactions by studying the relationships between aerosols and synoptic atmospheric circulation over the Euro-Mediterranean region. Two 40-year simulations (1979–2018) have been carried out with version 6.3 of the Centre National de Recherches Météorologiques (National Centre for Meteorological Research) – Aire Limitée Adaptation dynamique Développement InterNational (CNRM-ALADIN) regional climate model, one using interactive aerosols and the other one without any aerosol. The simulation with aerosols has been evaluated in terms of different climate and aerosol parameters. This evaluation shows a good agreement between the model and observations, significant improvements compared to the previous model version and consequently the relevance of using this model for the study of climate–aerosol interactions over this region. A first attempt to explain the climate variability of aerosols is based on the use of the North Atlantic Oscillation (NAO) index. The latter explains a significant part of the interannual variability, notably in winter for the export of dust aerosols over the Atlantic Ocean and the eastern Mediterranean, and in summer for the positive anomalies of anthropogenic aerosols over western Europe. This index is however not sufficient to fully understand the variations of aerosols in this region, notably at daily scale. The use of “weather regimes”, namely persisting meteorological patterns, stable at synoptic scale for a few days, provides a relevant description of atmospheric circulation, which drives the emission, transport and deposition of aerosols. The four weather regimes usually defined in this area in winter and in summer bring significant information to answer this question. The blocking and NAO+ regimes are largely favourable to strong aerosol effects on shortwave surface radiation and near-surface temperature, either because of higher aerosol loads or because of weaker cloud fraction, which reinforces the direct aerosol effect. Inversely, the NAO− and Atlantic Ridge regimes are unfavourable to aerosol radiative effects, because of weaker aerosol concentrations and increased cloud cover. This study thus puts forward the strong dependence of aerosol loads on the synoptic circulation from interannual to daily scales and, as a consequence, the important modulation of the aerosol effects on shortwave surface radiation and near-surface temperature by atmospheric circulation. The role of cloud cover is essential in this modulation as shown by the use of weather regimes.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference126 articles.

1. Alpert, P. and Ziv, B.: The Sharav Cyclone: Observations and some theoretical considerations, J. Geophys. Res., 94, 18495–18514, https://doi.org/10.1029/JD094iD15p18495, 1989. a

2. Andreas, E. L.: A New Sea Spray Generation Function for Wind Speeds up to 32 m s−1, J. Phys. Oceanogr., 28, 2175–2184, https://doi.org/10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO;2, 1998. a

3. Barnston, A. G. and Livezey, R. E.: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns, Mon. Weather Rev., 115, 1083–1126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2, 1987. a

4. Basart, S., Pérez, C., Cuevas, E., Baldasano, J. M., and Gobbi, G. P.: Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations, Atmos. Chem. Phys., 9, 8265–8282, https://doi.org/10.5194/acp-9-8265-2009, 2009. a

5. Belamari, S. and Pirani, A.: Validation of the optimal heat and momentum fluxes using the ORCA2LIM global oceanice model, MERSEA IP Deliverable, D.4.1.3, 88 pp., 2007. a, b

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3