Process-oriented models of autumn leaf phenology: ways to sound calibration and implications of uncertain projections

Author:

Meier MichaelORCID,Bigler ChristofORCID

Abstract

Abstract. Autumn leaf phenology marks the end of the growing season, during which trees assimilate atmospheric CO2. The length of the growing season is affected by climate change because autumn phenology responds to climatic conditions. Thus, the timing of autumn phenology is often modeled to assess possible climate change effects on future CO2-mitigating capacities and species compositions of forests. Projected trends have been mainly discussed with regards to model performance and climate change scenarios. However, there has been no systematic and thorough evaluation of how performance and projections are affected by the calibration approach. Here, we analyzed >2.3 million performances and 39 million projections across 21 process-oriented models of autumn leaf phenology, 5 optimization algorithms, ≥7 sampling procedures, and 26 climate model chains from two representative concentration pathways. Calibration and validation were based on >45 000 observations for beech, oak, and larch from 500 central European sites each. Phenology models had the largest influence on model performance. The best-performing models were (1) driven by daily temperature, day length, and partly by seasonal temperature or spring leaf phenology; (2) calibrated with the generalized simulated annealing algorithm; and (3) based on systematically balanced or stratified samples. Autumn phenology was projected to shift between −13 and +20 d by 2080–2099 compared to 1980–1999. Climate scenarios and sites explained more than 80 % of the variance in these shifts and thus had an influence 8 to 22 times greater than the phenology models. Warmer climate scenarios and better-performing models predominantly projected larger backward shifts than cooler scenarios and poorer models. Our results justify inferences from comparisons of process-oriented phenology models to phenology-driving processes, and we advocate for species-specific models for such analyses and subsequent projections. For sound calibration, we recommend a combination of cross-validations and independent tests, using randomly selected sites from stratified bins based on mean annual temperature and average autumn phenology, respectively. Poor performance and little influence of phenology models on autumn phenology projections suggest that current models are overlooking relevant drivers. While the uncertain projections indicate an extension of the growing season, further studies are needed to develop models that adequately consider the relevant processes for autumn phenology.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3