Modeling sea-salt aerosol in a coupled climate and sectional microphysical model: mass, optical depth and number concentration

Author:

Fan T.,Toon O. B.

Abstract

Abstract. Sea-salt aerosol mass, optical depth, and number concentration over the global oceans have significant implications for aerosol direct and indirect climate effects. We model sea-salt aerosol in a coupled climate and sectional microphysical model, CAM/CARMA, with aerosol dynamics including sea-salt emission, gravitational sedimentation, dry deposition, wet scavenging, and hygroscopic growth. We aim to find an integrated sea-salt source function parameterization in the global climate model to simultaneously represent mass, optical depth, and number concentration. Each of these quantities is sensitive to a different part of the aerosol size distribution, which requires a size resolved microphysical model to treat properly. The CMS source function introduced in this research, based upon several earlier source functions, reproduces measurements of mass, optical depth and number concentration as well as the size distribution better than other source function choices we tried. However, as we note, it is also important to properly set the removal rate of the particles. The source function and removal rate are coupled in producing observed abundances. We find that sea salt mass and optical depth peak in the winter, when winds are highest. However, surprisingly, particle numbers and CCN concentrations peak in summer when rainfall is lowest. The quadratic dependence of sea-salt optical depth on wind speed, observed by some, is well represented in the model. We also find good agreement with the wind speed dependency of the number concentration at the measurement location and the regional scale. The work is the basis for further investigation of the effects of sea-salt aerosol on climate and atmospheric chemistry.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3