Interdisciplinary fracture network characterization in the crystalline basement: a case study from the Southern Odenwald, SW Germany

Author:

Frey MatthisORCID,Bossennec ClaireORCID,Seib Lukas,Bär KristianORCID,Schill EvaORCID,Sass Ingo

Abstract

Abstract. The crystalline basement is considered a ubiquitous and almost inexhaustible source of geothermal energy in the Upper Rhine Graben (URG) and other regions worldwide. The hydraulic properties of the basement, which are one of the key factors in the productivity of geothermal power plants, are primarily controlled by hydraulically active faults and fractures. While the most accurate in situ information about the general fracture network is obtained from image logs of deep boreholes, such data are generally sparse and costly and thus often not openly accessible. To circumvent this problem, an outcrop analogue study was conducted with interdisciplinary geoscientific methods in the Tromm Granite, located in the southern Odenwald at the northeastern margin of the URG. Using light detection and ranging (lidar) scanning, the key characteristics of the fracture network were extracted in a total of five outcrops; these were additionally complemented by lineament analysis of two different digital elevation models (DEMs). Based on this, discrete fracture network (DFN) models were developed to calculate equivalent permeability tensors under assumed reservoir conditions. The influences of different parameters, such as fracture orientation, density, aperture and mineralization, were investigated. In addition, extensive gravity and radon measurements were carried out in the study area, allowing fault zones with naturally increased porosity and permeability to be mapped. Gravity anomalies served as input data for a stochastic density inversion, through which areas of potentially increased open porosity were identified. A laterally heterogeneous fracture network characterizes the Tromm Granite, with the highest natural permeabilities expected at the pluton margin, due to the influence of large shear and fault zones.

Funder

Interreg

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3