Detailed investigation of multi-scale fracture networks in glacially abraded crystalline bedrock at Åland Islands, Finland

Author:

Ovaskainen Nikolas,Skyttä Pietari,Nordbäck Nicklas,Engström JonORCID

Abstract

Abstract. Using multiple scales of observation in studying the fractures of the bedrock increases the reliability and representativeness of the respective studies. This is because the discontinuities, i.e. the fractures, in the bedrock lack any characteristic length and instead occur within a large range of scales of approximately 10 orders of magnitude. Consequently, fracture models need to be constructed based on representative multi-scale datasets. In this paper, we combine a detailed bedrock fracture study from an extensive bedrock outcrop area with lineament interpretation using light detection and ranging (lidar) and geophysical data. Our study offers lineament data in an intermediary length range (100–500 m) missing from discrete fracture network modelling conducted at Olkiluoto, a nuclear spent-fuel facility in Finland. Our analysis provides insights into multi-scale length distributions of lineaments and fractures and into the effect of glaciations on lineament and fracture data. A common power-law model was fit to the lineament and fracture lengths with an exponent of −1.13. However, the fractures and lineaments might follow distinct power laws or other statistical distributions rather than a common one. When categorising data by orientation, we can highlight differences in length distributions possibly related to glaciations. Our analysis further includes the topological, scale-independent fracture network characteristics. For example, we noticed a trend of decreasing apparent connectivity of fracture networks as the scale of observation increases.

Funder

Ydinjätehuoltorahasto

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3