Mid-level convection in a warm conveyor belt accelerates the jet stream
-
Published:2021-01-18
Issue:1
Volume:2
Page:37-53
-
ISSN:2698-4016
-
Container-title:Weather and Climate Dynamics
-
language:en
-
Short-container-title:Weather Clim. Dynam.
Author:
Blanchard Nicolas, Pantillon FlorianORCID, Chaboureau Jean-PierreORCID, Delanoë Julien
Abstract
Abstract. Jet streams and potential vorticity (PV) gradients along upper-level ridges, troughs and zonal flows form a waveguide that governs midlatitude dynamics. Warm conveyor belt (WCB) outflows often inject low-PV air into ridges, and the representation of WCBs is seen as a source of uncertainty for downstream forecasts. Recent studies have highlighted the presence of mesoscale structures with negative PV in WCBs, the impact of which, on large-scale dynamics, is still debated. Here, fine-scale observations of cloud and wind structures acquired with airborne Doppler radar and dropsondes provide rare information on the WCB outflow of the Stalactite cyclone and the associated upper-level ridge on 2 October 2016 during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX). The observations show a complex tropopause structure associated with two jet stream cores along the northwestern edge of the ridge. A reference convection-permitting simulation with full physics reproduces the observed structures and reveals the presence of elongated negative PV bands along the eastern jet stream core. In contrast, a sensitivity experiment with heat exchanges due to cloud processes being cut off shows lower cloud tops, weaker jet stream cores, a ridge less extended westward and the absence of negative PV bands. A Lagrangian analysis based on online trajectories shows that the anticyclonic branch of the WCB outflow enters the eastern jet stream core in the reference simulation, while it is absent in the sensitivity experiment. The anticyclonic ascents and negative PV bands originate from the same region near the cyclone's bent-back front. The most rapid ascents coincide with mid-level convective cells identified by clustering analysis, which are located in a region of conditional instability below the jet stream core and above a low-level jet. Horizontal PV dipoles are found around these cells, with the negative poles reaching absolute negative values, and the convective cells thus appear as the source of the negative PV bands. The results show that mid-level convection within WCBs accelerates the jet stream and may influence the downstream large-scale circulation.
Funder
Agence Nationale de la Recherche Institut national des sciences de l'Univers
Publisher
Copernicus GmbH
Reference28 articles.
1. Blanchard, N., Pantillon, F., Chaboureau, J.-P., and Delanoë, J.: Organization of convective ascents in a warm conveyor belt, Weather Clim. Dynam., 1, 617–634, https://doi.org/10.5194/wcd-1-617-2020, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m, n 2. Browning, K. A.: Mesoscale Aspects of Extratropical Cyclones: An Observational Perspective, in: The Life Cycles of Extratropical Cyclones, edited by, Shapiro, M. A. and Grønås S., American Meteorological Society, Boston, MA, 265–283, https://doi.org/10.1007/978-1-935704-09-6_18, 1999. a 3. Chagnon, J. M., Gray, S. L., and Methven, J.: Diabatic processes modifying
potential vorticity in a North Atlantic cyclone, Q. J. Roy. Meteorol. Soc.,
139, 1270–1282, https://doi.org/10.1002/qj.2037, 2013. a, b 4. Colella, P. and Woodward, P. R.: The Piecewise Parabolic Method (PPM) for
gas-dynamical simulations, J. Comput. Phys., 54, 174–201,
https://doi.org/10.1016/0021-9991(84)90143-8, 1984. a 5. Dauhut, T., Chaboureau, J.-P., Escobar, J., and Mascart, P.: Giga-LES of
Hector the Convector and its two tallest updrafts up to the stratosphere, J.
Atmos. Sci., 73, 5041–5060, https://doi.org/10.1175/JAS-D-16-0083.1, 2016. a
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|