What can we learn from European continuous atmospheric CO<sub>2</sub> measurements to quantify regional fluxes – Part 2: Sensitivity of flux accuracy to inverse setup

Author:

Carouge C.,Rayner P. J.,Peylin P.,Bousquet P.,Chevallier F.,Ciais P.

Abstract

Abstract. An inverse model using atmospheric CO2 observations from a European network of stations to reconstruct daily CO2 fluxes and their uncertainties over Europe at 50 km resolution has been developed within a Bayesian framework. We use the pseudo-data approach in which we try to recover known fluxes using a range of perturbations to the input. In this study, the focus is put on the sensitivity of flux accuracy to the inverse setup, varying the prior flux errors, the pseudo-data errors and the network of stations. We show that, under a range of assumptions about prior error and data error we can recover fluxes reliably at the scale of 1000 km and 10 days. At smaller scales the performance is highly sensitive to details of the inverse set-up. The use of temporal correlations in the flux domain appears to be of the same importance as the spatial correlations. We also note that the use of simple, isotropic correlations on the prior flux errors is more reliable than the use of apparently physically-based errors. Finally, increasing the European atmospheric network density improves the area with significant error reduction in the flux retrieval.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3