Measurements of iodine monoxide at a semi polluted coastal location

Author:

Furneaux K. L.,Whalley L. K.,Heard D. E.,Atkinson H. M.,Bloss W. J.,Flynn M. J.,Gallagher M. W.,Ingham T.,Kramer L.,Lee J. D.,Leigh R.,McFiggans G. B.,Mahajan A. S.,Monks P. S.,Oetjen H.,Plane J. M. C.,Whitehead J. D.

Abstract

Abstract. Point source measurements of IO by laser induced fluorescence spectroscopy were made at a semi-polluted coastal location during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) campaign in September 2006. The site, on the NW French coast in Roscoff, was characterised by extensive intertidal macroalgae beds which were exposed at low tide. The closest known iodine active macroalgae beds were at least 300 m from the measurement point. From 20 days of measurements, IO was observed above the instrument limit of detection on 14 days, of which a clear diurnal profile was observed on 11 days. The maximum IO mixing ratio was 30.0 pptv (10 s integration period) during the day, amongst the highest concentrations ever observed in the atmosphere, and 1–2 pptv during the night. IO concentrations were strongly dependent on tidal height, the intensity of solar irradiation and meteorological conditions. An intercomparison of IO measurements made using point source and spatially averaged DOAS instruments confirms the presence of hot-spots of IO caused by an inhomogeneous distribution of macroalgae. The co-incident, point source measurement of IO and ultra fine particles (2.5 nm≥d≥10 nm) displayed a strong correlation, providing evidence that IO is involved in the production pathway of ultra fine particles at coastal locations. Finally, a modelling study shows that high IO concentrations which are likely to be produced in a macrolagae rich environment can significantly perturb the concentrations of OH and HO2 radicals. The effect of IO on HOx is reduced as NOx concentrations increase.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3