Quantification of iodine monoxide based on incoherent broadband cavity enhanced absorption spectroscopy

Author:

Zhang He-Lu,Qin Min,Fang Wu,Tang Ke,Duan Jun,Meng Fan-Hao,Shao Dou,Hua Hui,Liao Zhi-Tang,Xie Pin-Hua, ,

Abstract

The quantitative method of iodine monoxide radical (IO) using incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) in the 435–465 nm band is described in this paper. In order to obtain the concentration of IO accurately, the parameters such as the mirror reflectivity, effective cavity length and sample loss of the IBBCEAS system are evaluated. Using the difference of Rayleigh scattering between nitrogen and helium, the reflectivity curve of the high-reflection mirror is obtained. The reflectivity <i>R</i> of the mirror at 436.1 nm of the IO absorption peak is about 0.99982, and the effective absorption optical path reaches 3.83 km under vacuum condition. According to the absorption of O<sub>4</sub>, the effective cavity length of the modified system is 60.7 cm. The Allan deviation is used to evaluate the performance of the system, and the standard deviation is used to analyze the detection sensitivity of the system. When the time resolution is 60 s, the detection sensitivity (2<i>σ</i>) of the system for IO and NO<sub>2</sub> are 1.9 pptv and 20 pptv (part per trillion by volume), respectively. The iodine dissolved in potassium iodide (KI) solution is taken out by the bubbling method and react with ozone after photolysis to produce a stable concentration of IO sample gas. The IO loss in the sampling tube is calibrated, and the results show that the sampling tube has no significant effect on the IO loss. The IBBCEAS system is used to determine the linearity of IO, and the correlation coefficient <i>R</i><sup>2</sup> between the measured concentration of IO and the proportioned concentration in a concentration range from 39 to 530 pptv is 0.99. The IO produced by the reaction of iodine released from kelp with ozone is measured.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3