Author:
Lohmann U.,Rotstayn L.,Storelvmo T.,Jones A.,Menon S.,Quaas J.,Ekman A. M. L.,Koch D.,Ruedy R.
Abstract
Abstract. Uncertainties in aerosol radiative forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of precipitation formation. In former assessments of aerosol radiative forcings, these effects have not been quantified. Also, with global aerosol-climate models simulating interactively aerosols and cloud microphysical properties, a quantification of the aerosol forcings in the traditional way is difficult to define properly. Here we argue that fast feedbacks should be included because they act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Based on our results, we recommend RFP as a valid option to compare different forcing agents, and to compare the effects of particular forcing agents in different models.
Reference92 articles.
1. Anderson, T. L., Charlson, R. J., Schwartz, S. E., Knutti, R., Boucher, O., Rodhe, H., and Heintzenberg, J.: Climate forcing by Aerosols – a hazy picture, Science, 300, 1103–1104, 2003.
2. Andrews, T. and Forster, P. M.: CO2 forcing induces semi-direct effects with consequences for climate feedback interpretations, Geophys. Res. Lett., 35, https://doi.org/ 10.1029/2007GL032 273, l04802, 2008.
3. Andronova, N. G. and Schlesinger, M. E.: Objective estimation of the probability density function for climate sensitivity, J. Geophys. Res., 106, 22605–22611, 2001.
4. Boucher, O. and Lohmann, U.: The sulfate-{CCN}-cloud albedo effect: A sensitivity study with two general circulation models, Tellus B, 47, 281–300, 1995.
5. Chen, Y. and Penner, J. E.: Uncertainty analysis for estimates of the first indirect aerosol effect, Atmos. Chem. Phys., 5, 2935–2948, 2005.
Cited by
172 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献