Variability in the properties of the distribution of the relative humidity with respect to ice: implications for contrail formation

Author:

Sanogo Sidiki,Boucher OlivierORCID,Bellouin Nicolas,Borella AudranORCID,Wolf KevinORCID,Rohs SusanneORCID

Abstract

Abstract. Relative humidity with respect to ice (RHi) is a key variable in the formation of cirrus clouds and contrails. We document its probability density function (PDF) using long-term Measurements of Ozone, Water Vapour, Carbon Monoxide and Nitrogen Oxides by In-Service Airbus Aircraft (MOZAIC) and the In-service Aircraft for a Global Observing System (IAGOS) observations over the period 1995–2022 in the upper troposphere (UT) and the lower stratosphere (LS) between 325 and 175 hPa. The characteristics of the RHi PDF differ in the UT and in the LS of the high-latitude regions (HLs) and mid-latitude regions (MLs) of the Northern Hemisphere. In the LS, this PDF decreases exponentially with increasing RHi. In the UT, it first increases exponentially in subsaturated conditions and then decreases exponentially in supersaturated conditions. Because of these different behaviors, the PDF for the combined UT and LS is bimodal. In contrast to the HLs and the MLs, the RHi PDF in the tropical troposphere decreases exponentially with increasing RHi. The different forms of PDF, in the tropics and in the higher-latitude regions, lead to a global PDF of RHi in subsaturated tropospheric conditions that is almost uniform. These findings invite caution when using MOZAIC and IAGOS measurements to calibrate large-scale simulations of RHi. The variability in RHi properties associated with that of temperature also has implications for the formation of contrails. We examined the impact of switching fuel (from kerosene to bioethanol or liquid hydrogen) on the frequency of contrail formation using the Schmidt–Appleman criterion. We show that bioethanol and, to a larger extent, liquid hydrogen would produce more contrails. The impact of a potential change from kerosene to these alternative fuels decreases with decreasing pressure but increases when moving from the higher latitudes of the Northern Hemisphere to the tropics. Finally, we emphasize that investigations of the impact on contrail occurrence frequency as a result of switching from fossil kerosene to more sustainable fuels must be carried out in various meteorological conditions.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3