The Formation of Exhaust Condensation Trails by Jet Aircraft

Author:

Appleman H.1

Affiliation:

1. Hqs., Air Weather Service, Washington 25, D. C.

Abstract

This paper defines the meteorological state of the atmosphere which will give rise to the formation of condensation trails (contrails) as the exhaust from an aircraft engine mixes with and saturates the environment. Three basic assumptions were made with regard to the formation of visible contrails: (1) contrails are composed of ice crystals; (2) water vapor cannot be transformed into ice without first passing through the liquid phase, thus necessitating an intermediate state of saturation with respect to water; (3) a minimum visible water content of 0.004 gm/m3 is required for a faint trail and 0.01 gm/m3 for a distinct trail. This last requirement proved of no importance in determining whether or not a trail would form, but did affect its persistence. Curves were constructed showing the critical temperature for the formation of a visible trail as a function of the pressure and relative humidity of the environment and the amount of air entrained into the exhaust. It is shown that these curves are applicable to any aircraft which has the same water to heat ratio in its exhaust as the case discussed in this report. In general this ratio is fairly constant regardless of the type of airplane, control settings, or fuel. The major exception occurs with aircraft powered by reciprocating engines in which case a considerable portion of the heat produced may be dissipated outside of the trail. A separate, but similar, study would be necessary for each aircraft with a significantly different proportion of such heat loss.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 229 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3