Enhancing the operational value of snowpack models with visualization design principles

Author:

Horton SimonORCID,Nowak Stan,Haegeli PascalORCID

Abstract

Abstract. Forecasting snow avalanches requires a reliable stream of field observations, which are often difficult and expensive to collect. Despite the increasing capability of simulating snowpack conditions with physical models, models have seen limited adoption by avalanche forecasters. Feedback from forecasters suggests that model data are presented in ways that are difficult to interpret and irrelevant to operational needs. We apply a visualization design framework to enhance the value of snowpack models to avalanche forecasters. An established risk-based avalanche forecasting workflow is used to define the ways forecasters solve problems with snowpack data. We suggest that model data be visualized in ways that directly support common forecasting tasks such as identifying snowpack features related to avalanche problems and locating avalanche problems in terrain at relevant spatial scales. Examples of visualizations that support these tasks and follow established perceptual and cognitive principles from the field of information visualization are presented. Interactive designs play a critical role in understanding these complex datasets and are well suited for forecasting workflows. Although extensive user testing is still needed to evaluate the effectiveness of these designs, visualization design principles open the door to more relevant and interpretable applications of snowpack model for avalanche forecasters. This work sets the stage for implementing snowpack models into visualization tools where forecasters can test their operational value and learn their capabilities and deficiencies.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3