A method to use proxy data of runoff-related impacts for the evaluation of a model mapping intense storm runoff hazard: application to the railway context

Author:

Braud IsabelleORCID,Lagadec Lilly-Rose,Moulin Loïc,Chazelle Blandine,Breil PascalORCID

Abstract

Abstract. The IRIP method, or “indicator of intense pluvial runoff” in English, is a geomatics method that allows mapping the susceptibility of a territory to surface runoff and that provides three maps of susceptibility to the generation, transfer and accumulation of runoff. It is based on the combination of binary maps that represent the impact of a given factor (favourable or not favourable) on runoff. These factors are summed up to provide susceptibility maps for runoff with levels ranging from 0 to 5. To be used for risk prevention, the quality and limitations of the produced maps must be assessed. However, direct runoff data are very scarce and not available everywhere in a territory. Proxy data of impacts related to runoff can provide information useful for the evaluation of the IRIP maps. However, both pieces of information cannot be compared directly, and a specific methodology to compare susceptibility maps and proxy data must be proposed. This paper presents such a method, which accounts for the hazard level, the vulnerability of the study area and possible mitigation actions taken to reduce the risk. The evaluation method is assessed using a comprehensive database of runoff-related impacts collected on an 80 km railway line in Normandy (north of France) and covering the whole 20th century. The results show that the evaluation method is robust, relevant and generic enough for evaluating a non-quantitative method of runoff hazard mapping using localized runoff-related proxy data. In addition, the good performance of the IRIP model in the case study confirms that the susceptibility maps produced by the IRIP model provide relevant information related to runoff and that they can be used to design risk management strategies, as illustrated in the railway context.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3