Proxy Data of Surface Water Floods in Rural Areas: Application to the Evaluation of the IRIP Intense Runoff Mapping Method Based on Satellite Remote Sensing and Rainfall Radar

Author:

Cerbelaud ArnaudORCID,Breil Pascal,Blanchet Gwendoline,Roupioz LaureORCID,Briottet XavierORCID

Abstract

Along with fluvial floods (FFs), surface water floods (SWFs) caused by extreme overland flow are one of the main flood hazards occurring after heavy rainfall. Using physics-based distributed hydrological models, surface runoff can be simulated from precipitation inputs to investigate regions prone to soil erosion, mudflows or landslides. Geomatics approaches have also been developed to map susceptibility towards intense surface runoff without explicit hydrological modeling or event-based rainfall forcing. However, in order for these methods to be applicable for prevention purposes, they need to be comprehensively evaluated using proxy data of runoff-related impacts following a given event. Here, the IRIP geomatics mapping model, or “Indicator of Intense Pluvial Runoff”, is faced with rainfall radar measurements and damage maps derived from satellite imagery and supervised classification algorithms. Six watersheds in the Aude and Alpes-Maritimes departments in the South of France are investigated over more than 2000 km2 of rural areas during two flash-flood events. The results of this study show that the greater the IRIP susceptibility scores, the more SWFs are detected by the remote sensing-based detection algorithm. Proportions of damaged plots become even larger when considering areas which experienced heavier precipitations. A negative relationship between the mean IRIP accumulation scores and the intensity of rainfall is found among damaged plots, confirming that SWFs preferably occur over potentially riskier areas where rainfall is lower. Land use and soil hydraulic conductivity are identified as the most relevant indicators for IRIP to define production areas responsible for downslope deteriorations. Multivariate logistic regression is also used to determine the relative weights of upstream and local topography, uphill production areas and rainfall intensity for explaining SWF occurrence. This work overall confirms the relevance of IRIP methodology while suggesting improvements to its core framework to implement better prevention strategies against SWF-related hazards.

Funder

DGPR/SRNH

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3