The importance of snowmelt spatiotemporal variability for isotope-based hydrograph separation in a high-elevation catchment

Author:

Schmieder Jan,Hanzer FlorianORCID,Marke Thomas,Garvelmann Jakob,Warscher MichaelORCID,Kunstmann Harald,Strasser UlrichORCID

Abstract

Abstract. Seasonal snow cover is an important temporary water storage in high-elevation regions. Especially in remote areas, the available data are often insufficient to accurately quantify snowmelt contributions to streamflow. The limited knowledge about the spatiotemporal variability of the snowmelt isotopic composition, as well as pronounced spatial variation in snowmelt rates, leads to high uncertainties in applying the isotope-based hydrograph separation method. The stable isotopic signatures of snowmelt water samples collected during two spring 2014 snowmelt events at a north- and a south-facing slope were volume weighted with snowmelt rates derived from a distributed physics-based snow model in order to transfer the measured plot-scale isotopic composition of snowmelt to the catchment scale. The observed δ18O values and modeled snowmelt rates showed distinct inter- and intra-event variations, as well as marked differences between north- and south-facing slopes. Accounting for these differences, two-component isotopic hydrograph separation revealed snowmelt contributions to streamflow of 35 ± 3 and 75 ± 14 % for the early and peak melt season, respectively. These values differed from those determined by formerly used weighting methods (e.g., using observed plot-scale melt rates) or considering either the north- or south-facing slope by up to 5 and 15 %, respectively.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference74 articles.

1. Ahluwalia, R. S., Rai, S. P., Jain, S. K., Kumar, B., and Dobhal, D. P.: Assessment of snowmelt runoff modelling and isotope analysis: a case study from the western Himalaya, India, Ann. Glaciol., 54, 299–304, https://doi.org/10.3189/2013AoG62A133, 2013.

2. APCC: Austrian Assessment Report (AAR14). Summary for Policymakers (SPM), Austrian Panel on Climate Change, Vienna, Austria, 2014.

3. Árnason, B., Buason, T., Martinec, J., and Theodorson, P.: Movement of water through snowpack traced by deuterium and tritium, in: The role of snow and ice in hydrology, Proc. Banff Symp., edited by: UNESCO-WMO-IAHS, IAHS Publ. No. 107, 1973.

4. Beaulieu, M., Schreier, H., and Jost, G.: A shifting hydrological regime: a field investigation of snowmelt runoff processes and their connection to summer base flow, Sunshine Coast, British Columbia, Hydrol. Process., 26, 2672–2682, https://doi.org/10.1002/hyp.9404, 2012.

5. Behrens, H., Moser, H., Oerter, H., Rauert, W., Stichler, W., and Ambach, W.: Models for the runoff from a glaciated catchment area using measurements of environmental isotope contents, Isotope Hydrology Vol. ll, W-05, Proceedings of a Symposium, Neuherberg, 19–23 June 1978, IAEA, Vienna, IAEA-SM-228/41, 2, 829–846, 1978.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3