Affiliation:
1. Department of Earth Sciences Indian Institute of Technology Roorkee India
2. Hydrological Investigations Division National Institute of Hydrology Roorkee India
3. State Key Laboratory of Marine Geology Tongji University Shanghai China
Abstract
AbstractSnow and glacier melt are significant contributors to streamflow in Himalayan catchments, and their increasing contributions serve as key indicators of climate change. Consequently, the quantification of these streamflow components holds significant importance for effective water resource management. In this study, we utilized the spatio‐temporal variability of isotopic signatures in stream water, rainfall, winter fresh snow, snowpack, glaciers, springs, and wells, in conjunction with hydrometeorological observations and Snow Cover Area (SCA) data, to identify water sources and develop a conceptual understanding of streamflow dynamics in three catchments (Lidder, Sindh, and Vishow) within the western Himalayas. The following results were obtained: (a) endmember contributions to the streamflow exhibit significant spatial and seasonal variability across the three catchments during 2018–2020; (b) snowmelt dominates streamflow, with average contributions across the entire catchment varying: 59% ± 9%, 55% ± 4%, 56% ± 6%, and 55% ± 9% in Lidder, 43% ± 6%, 38% ± 6%, 32% ± 4%, and 33% ± 5% in Sindh and 45% ± 8%, 40% ± 6%, 39% ± 6%, and 32% ± 5% in Vishow during spring, summer, autumn, and winter seasons, respectively; (c) glacier melt contributions can reach ~30% to streamflow near the source regions during peak summer; (d) The primary uncertainties in streamflow components are attributed to the spatiotemporal variability of tracer signatures of winter fresh snow/snowpack (±1.9% to ±20%); (e)regarding future streamflow components, if the glacier contribution were to disappear completely, the annual average streamflow in Lidder and Sindh could decrease up to ~20%. The depletion of the cryosphere in the region has led to a rapid increase in runoff (1980–1900), but it has also resulted in a significant streamflow reduction due to glacier mass loss and changes in peak streamflow over the past three decades (1990–2020). The findings highlight the significance of environmental isotope analysis, which provides insights into water resources and offers a critical indication of the streamflow response to glacier loss under a changing climate.
Funder
Indian Institute of Technology Roorkee