Parameter regionalization of a monthly water balance model for the
conterminous United States
-
Published:2016-07-15
Issue:7
Volume:20
Page:2861-2876
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Bock Andrew R.,Hay Lauren E.,McCabe Gregory J.,Markstrom Steven L.,Atkinson R. Dwight
Abstract
Abstract. A parameter regionalization scheme to transfer parameter values from gaged to ungaged areas for a monthly water balance model (MWBM) was developed and tested for the conterminous United States (CONUS). The Fourier Amplitude Sensitivity Test, a global-sensitivity algorithm, was implemented on a MWBM to generate parameter sensitivities on a set of 109 951 hydrologic response units (HRUs) across the CONUS. The HRUs were grouped into 110 calibration regions based on similar parameter sensitivities. Subsequently, measured runoff from 1575 streamgages within the calibration regions were used to calibrate the MWBM parameters to produce parameter sets for each calibration region. Measured and simulated runoff at the 1575 streamgages showed good correspondence for the majority of the CONUS, with a median computed Nash–Sutcliffe efficiency coefficient of 0.76 over all streamgages. These methods maximize the use of available runoff information, resulting in a calibrated CONUS-wide application of the MWBM suitable for providing estimates of water availability at the HRU resolution for both gaged and ungaged areas of the CONUS.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference67 articles.
1. Adam, J. C. and Lettenmaier, D. P.: Bias correction of global gridded precipitation for solid precipitation undercatch, J. Geophys. Res., 108, 1–14, https://doi.org/10.1029/2002JD002499, 2003. 2. Ali, G., Tetzlaff, D., Soulsby, C., McDonnell, J. J., and Capell, R.: A comparison of similarity indices for catchment classification using a cross-regional data set, Adv. Water Resour., 40, 11–22, https://doi.org/10.1016/j.advwatres.2012.01.008, 2012. 3. Archfield, S. A., Clark, M., Arheimer, B., Hay, L. E., Farmer, W. H, McMillan, H., Seibert, J., Kiang, J. E., Wagener, T., Bock, A., Hakala, K., Andressian, V., Attinger, S., Viglione, A., Knight, R. R., and Over, T.: Accelerating advances in continental domain hydrologic modeling, Water Resour. Res., 51, 10078–10091, https://doi.org/10.1002/2015WR017498, 2015. 4. Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., van Griensven, A., Van Liew, M. W., Kannan, N., and Jha, M. K.: SWAT: Model Use, Calibration and Validation, T. ASABE, 55, 1491–1508, https://doi.org/10.13031/2013.42256, 2012. 5. Blasone, R. S., Madsen, H., and Rosbjerg, D.: Parameter estimation in distributed hydrological modelling: comparison of global and local optimisation techniques, Nord. Hydrol., 34, 451–476, https://doi.org/10.2166/nh.2007.024, 2007.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|