Parameter estimation in distributed hydrological modelling: comparison of global and local optimisation techniques

Author:

Blasone R.-S.1,Madsen H.2,Rosbjerg Dan1

Affiliation:

1. Institute of Environment and Resources, Technical University of Denmark, Bygningstorvet 115, DK-2800, Kongens Lyngby, Denmark

2. DHI Water - Environment - Health, DK-2970, Hørsholm, Denmark

Abstract

Much research has been spent in the last three decades in developing more effective and efficient automatic calibration procedures and in demonstrating their applicability to hydrological problems. Several problems have emerged when applying these procedures to calibration of conceptual rainfall–runoff and groundwater (GW) models, such as computational time, large number of calibration parameters, parameter identifiability, model response surface complexity, handling of multiple objectives and parameter equifinality. All these are expected to be much more severe for more complex models, for which comprehensive calibration studies have not so far been conducted. The scope of this paper is to investigate the performance of a global and a local optimisation technique, respectively, the Shuffled Complex Evolution algorithm and the gradient-based Gauss–Marquard–Levenberg algorithm, in calibration of physically based distributed models of different complexity. The models considered are a steady-state GW model, a transient GW model and a fully integrated model of the same catchment. The calibration is conducted in a multi-objective framework where two different aspects of the model response, the simulated runoff and the groundwater elevation are aggregated and simultaneously optimised. Different aggregated objective functions are used to give different weights to the calibration criteria. The results of the calibration procedures are compared in terms of effectiveness and efficiency and demonstrate the different performance of the methods. Moreover, a combination of the global and local techniques is investigated as an attempt to exploit the advantages of both procedures, while overcoming their drawbacks.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3