Improving glacio-hydrological model calibration and model performance in cold regions using satellite snow cover data

Author:

Mohammadi Babak,Gao Hongkai,Pilesjö Petter,Duan ZhengORCID

Abstract

AbstractHydrological modeling realism is a central research question in hydrological studies. However, it is still a common practice to calibrate hydrological models using streamflow as a single hydrological variable, which can lead to large parameter uncertainty in hydrological simulations. To address this issue, this study employed a multi-variable calibration framework to reduce parameter uncertainty in a glacierized catchment. The current study employed multi-variable calibration using three different calibration schemes to calibrate a glacio-hydrological model (namely the FLEXG) in northern Sweden. The schemes included using only gauged streamflow data (scheme 1), using satellite snow cover area (SCA) derived from MODIS data (scheme 2), and using both gauged streamflow data and satellite SCA data as references for calibration (scheme 3) of the FLEXG model. This study integrated the objective functions of satellite-derived SCA and gauged streamflow into one criterion for the FLEXG model calibration using a weight-based approach. Our results showed that calibrating the FLEXG model based on solely satellite SCA data (from MODIS) produced an accurate simulation of SCA but poor simulation of streamflow. In contrast, calibrating the FLEXG model based on the measured streamflow data resulted in minimum error for streamflow simulation but high error for SCA simulation. The promising results were achieved for glacio-hydrological simulation with acceptable accuracy for simulation of both streamflow and SCA, when both streamflow and SCA data were used for calibration of FLEXG. Therefore, multi-variable calibration in a glacierized basin could provide more realistic hydrological modeling in terms of multiple glacio-hydrological variables.

Funder

Crafoordska Stiftelsen

Lund University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3